This image shows Rudolf Weeber

Rudolf Weeber

Dr.

Senior Lecturer
Institute for Computational Physics

Contact

+49 711 685 67609
+49 711 685 63658

Allmandring 3
70569 Stuttgart
Deutschland
Room: 1.036

Subject

Currently, my work is focussed on magnetic gels and elastomers. They are soft elastic materials, into which magnetic particles are embedded. Through the interplay of the elasticity of the matrix and the magnetic properties of the particles, the sample's shape and elasticity can be controlled by means of external magnetic fields. Predicting this behaviour accurately is, however, rather difficult, as, typically several effects are at work at the same time. We approach the topic using computer simulations, as they allow for precise control of individual aspects of the models, and we can study the relevant mechanisms separate from each other.

I am also involved in work on nanoparticles in a flow and micro-rheology, in particular, the irreversible agglomeration of soot particles in turbulent flow as well as the study of local jamming effects in optical tweezer experiments.

I am interested in the development of simulation software and am a contributor to the ESPResSo molecular dynamics package. 

  1. Weeber, R., Grad, J.-N., Beyer, D., Blanco, P. M., Kreissl, P., Reinauer, A., Tischler, I., Košovan, P., & Holm, C. (2023). ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-821978-2.00103-3
  2. Weeber, R., Kreissl, P., & Holm, C. (2023). Magnetic field controlled behavior of magnetic gels studied using particle-based simulations. Physical Sciences Reviews, 8(8), Article 8. https://doi.org/doi:10.1515/psr-2019-0106
  3. Weeber, R., Grad, J.-N., Beyer, D., Blanco, P. M., Kreissl, P., Reinauer, A., Tischler, I., Košovan, P., & Holm, C. (2023). ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-821978-2.00103-3
  4. Kreissl, P., Holm, C., & Weeber, R. (2023). Interplay between steric and hydrodynamic interactions for ellipsoidal magnetic nanoparticles in a polymer suspension. Soft Matter, 19(6), Article 6. https://doi.org/10.1039/D2SM01428A
  5. Weeber, R., Grad, J.-N., Beyer, D., Blanco, P. M., Kreissl, P., Reinauer, A., Tischler, I., Košovan, P., & Holm, C. (2023). ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-821978-2.00103-3
  6. Kreissl, P., Holm, C., & Weeber, R. (2023). Interplay between steric and hydrodynamic interactions for ellipsoidal magnetic nanoparticles in a polymer suspension. Soft Matter, 19(6), Article 6. https://doi.org/10.1039/D2SM01428A
  7. Tischler, I., Weik, F., Kaufmann, R., Kuron, M., Weeber, R., & Holm, C. (2022). A thermalized electrokinetics model including stochastic reactions suitable for multiscale simulations of reaction–advection–diffusion systems. Journal of Computational Science, 63, 101770. https://doi.org/10.1016/j.jocs.2022.101770
  8. Tischler, I., Weik, F., Kaufmann, R., Kuron, M., Weeber, R., & Holm, C. (2022). A thermalized electrokinetics model including stochastic reactions suitable for multiscale simulations of reaction–advection–diffusion systems. Journal of Computational Science, 63, 101770. https://doi.org/10.1016/j.jocs.2022.101770
  9. Tischler, I., Weik, F., Kaufmann, R., Kuron, M., Weeber, R., & Holm, C. (2022). A thermalized electrokinetics model including stochastic reactions suitable for multiscale simulations of reaction-advection-diffusion systems. Journal of Computational Science, 63, 101770. https://doi.org/10.1016/j.jocs.2022.101770
  10. Bindgen, S., Weik, F., Weeber, R., Koos, E., & de Buyl, P. (2021). Lees–Edwards boundary conditions for translation invariant shear flow: Implementation and transport properties. Physics of Fluids, 33(8), Article 8. https://doi.org/10.1063/5.0055396
  11. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2021). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.2
  12. Kreissl, P., Holm, C., & Weeber, R. (2021). Frequency-dependent magnetic susceptibility of magnetic nanoparticles in a polymer solution: a simulation study. Soft Matter, 17(1), Article 1. https://doi.org/10.1039/D0SM01554G
  13. Kreissl, P., Holm, C., & Weeber, R. (2021). Frequency-dependent magnetic susceptibility of magnetic nanoparticles in a polymer solution: a simulation study. Soft Matter, 17(1), Article 1. https://doi.org/10.1039/D0SM01554G
  14. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2021). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.2
  15. Itto, Y. (2021). Fluctuating Diffusivity of RNA-Protein Particles: Analogy with Thermodynamics. Entropy, 23(3), Article 3. https://doi.org/10.3390/e23030333
  16. Bindgen, S., Weik, F., Weeber, R., Koos, E., & de Buyl, P. (2021). Lees–Edwards boundary conditions for translation invariant shear flow: Implementation and transport properties. Physics of Fluids, 33(8), Article 8. https://doi.org/10.1063/5.0055396
  17. Flemisch, B., Hermann, S., Holm, C., Mehl, M., Reina, G., Uekermann, B., Boehringer, D., Ertl, T., Grad, J.-N., Iglezakis, D., Jaust, A., Koch, T., Seeland, A., Weeber, R., Weik, F., & Weishaupt, K. (2020). Umgang mit Forschungssoftware an der Universität Stuttgart. Universität Stuttgart. https://doi.org/10.18419/OPUS-11178
  18. Flemisch, B., Hermann, S., Holm, C., Mehl, M., Reina, G., Uekermann, B., Boehringer, D., Ertl, T., Grad, J.-N., Iglezakis, D., Jaust, A., Koch, T., Seeland, A., Weeber, R., Weik, F., & Weishaupt, K. (2020). Umgang mit Forschungssoftware an der Universität Stuttgart. Universität Stuttgart. https://doi.org/10.18419/OPUS-11178
  19. Smiljanic, M., Weeber, R., Pflüger, D., Holm, C., & Kronenburg, A. (2019). Developing coarse-grained models for agglomerate growth. The European Physical Journal Special Topics, 227(14), Article 14. https://doi.org/10.1140/epjst/e2018-800177-y
  20. Weeber, R., Nestler, F., Weik, F., Pippig, M., Potts, D., & Holm, C. (2019). Accelerating the calculation of dipolar interactions in particle based simulations with open boundary conditions by means of the P2NFFT method. Journal of Computational Physics, 391, 243--258. https://doi.org/10.1016/j.jcp.2019.01.044
  21. Smiljanic, M., Weeber, R., Pflüger, D., Holm, C., & Kronenburg, A. (2019). Developing coarse-grained models for agglomerate growth. The European Physical Journal Special Topics, 227(14), Article 14. https://doi.org/10.1140/epjst/e2018-800177-y
  22. Weik, F., Weeber, R., Szuttor, K., Breitsprecher, K., de Graaf, J., Kuron, M., Landsgesell, J., Menke, H., Sean, D., & Holm, C. (2019). ESPResSo 4.0 -- an extensible software package for simulating soft matter systems. The European Physical Journal Special Topics, 227(14), Article 14. https://doi.org/10.1140/epjst/e2019-800186-9
  23. Weeber, R., Kreissl, P., & Holm, C. (2019). Studying the field-controlled change of shape and elasticity of magnetic gels using particle-based simulations. Archive of Applied Mechanics, 89(1), Article 1. https://doi.org/10.1007/s00419-018-1396-4
  24. Weeber, R., Hermes, M., Schmidt, A. M., & Holm, C. (2018). Polymer architecture of magnetic gels: a review. Journal of Physics: Condensed Matter, 30(6), Article 6. https://doi.org/10.1088/1361-648x/aaa344
  25. Sivaraman, G., Amorim, R. G., Scheicher, R. H., & Fyta, M. (2017). Insights into the detection of mutations and epigenetic markers using diamondoid-functionalized sensors. RSC Adv., 7(68), Article 68. https://doi.org/10.1039/C7RA06889A
  26. Inci, G., Kronenburg, A., Weeber, R., & Pflüger, D. (2017). Langevin Dynamics Simulation of Transport and Aggregation of Soot Nano-particles in Turbulent Flows. Flow, Turbulence and Combustion, 98(4), Article 4. https://doi.org/10.1007/s10494-016-9797-3
  27. Inci, G., Kronenburg, A., Weeber, R., & Pflüger, D. (2017). Langevin Dynamics Simulation of Transport and Aggregation of Soot Nano-particles in Turbulent Flows. Flow, Turbulence and Combustion, 98(4), Article 4. https://doi.org/10.1007/s10494-016-9797-3
  28. Sivaraman, G., Amorim, R. G., Scheicher, R. H., & Fyta, M. (2017). Insights into the detection of mutations and epigenetic markers using diamondoid-functionalized sensors. RSC Adv., 7(68), Article 68. https://doi.org/10.1039/C7RA06889A
  29. Huang, S., Pessot, G., Cremer, P., Weeber, R., Holm, C., Nowak, J., Odenbach, S., Menzel, A. M., & Auernhammer, G. K. (2016). Buckling of paramagnetic chains in soft gels. Soft Matter, 12(1), Article 1. https://doi.org/10.1039/C5SM01814E
  30. Huang, S., Pessot, G., Cremer, P., Weeber, R., Holm, C., Nowak, J., Odenbach, S., Menzel, A. M., & Auernhammer, G. K. (2016). Buckling of paramagnetic chains in soft gels. Soft Matter, 12(1), Article 1. https://doi.org/10.1039/C5SM01814E
  31. Weeber, R., Kantorovich, S., & Holm, C. (2015). Ferrogels cross-linked by magnetic nanoparticles—Deformation mechanisms in two and three dimensions studied by means of computer simulations. Journal of Magnetism and Magnetic Materials, 383, 262--266. https://doi.org/10.1016/j.jmmm.2015.01.018
  32. Weeber, R., Kantorovich, S., & Holm, C. (2015). Ferrogels cross-linked by magnetic nanoparticles—Deformation mechanisms in two and three dimensions studied by means of computer simulations. Journal of Magnetism and Magnetic Materials, 383, 262--266. https://doi.org/10.1016/j.jmmm.2015.01.018
  33. Pessot, G., Weeber, R., Holm, C., Löwen, H., & Menzel, A. M. (2015). Towards a scale-bridging description of ferrogels and magnetic elastomers. Journal of Physics: Condensed Matter, 27(32), Article 32. https://doi.org/10.1088/0953-8984/27/32/325105
  34. Weeber, R., Kantorovich, S., & Holm, C. (2015). Ferrogels cross-linked by magnetic particles: Field-driven deformation and elasticity studied using computer simulations. The Journal of Chemical Physics, 143(15), Article 15. https://doi.org/10.1063/1.4932371
  35. Weeber, R., Kantorovich, S., & Holm, C. (2015). Ferrogels cross-linked by magnetic particles: Field-driven deformation and elasticity studied using computer simulations. The Journal of Chemical Physics, 143(15), Article 15. https://doi.org/10.1063/1.4932371
  36. Pessot, G., Weeber, R., Holm, C., Löwen, H., & Menzel, A. M. (2015). Towards a scale-bridging description of ferrogels and magnetic elastomers. Journal of Physics: Condensed Matter, 27(32), Article 32. https://doi.org/10.1088/0953-8984/27/32/325105
  37. Arnold, A., Lenz, O., Kesselheim, S., Weeber, R., Fahrenberger, F., Roehm, D., Košovan, P., & Holm, C. (2013). ESPResSo 3.1: Molecular Dynamics Software for Coarse-Grained Models. Meshfree Methods for Partial Differential Equations VI, 1--23.
  38. Arnold, A., Lenz, O., Kesselheim, S., Weeber, R., Fahrenberger, F., Roehm, D., Košovan, P., & Holm, C. (2013). ESPResSo 3.1: Molecular Dynamics Software for Coarse-Grained Models. Meshfree Methods for Partial Differential Equations VI, 1--23.
  39. Weeber, R., Klinkigt, M., Kantorovich, S., & Holm, C. (2013). Microstructure and magnetic properties of magnetic fluids consisting of shifted dipole particles under the influence of an external magnetic field. The Journal of Chemical Physics, 139(21), Article 21. https://doi.org/10.1063/1.4832239
  40. Klinkigt, M., Weeber, R., Kantorovich, S., & Holm, C. (2013). Cluster formation in systems of shifted-dipole particles. Soft Matter, 9(13), Article 13. https://doi.org/10.1039/C2SM27290C
  41. Weeber, R., Klinkigt, M., Kantorovich, S., & Holm, C. (2013). Microstructure and magnetic properties of magnetic fluids consisting of shifted dipole particles under the influence of an external magnetic field. The Journal of Chemical Physics, 139(21), Article 21. https://doi.org/10.1063/1.4832239
  42. Klinkigt, M., Weeber, R., Kantorovich, S., & Holm, C. (2013). Cluster formation in systems of shifted-dipole particles. Soft Matter, 9(13), Article 13. https://doi.org/10.1039/C2SM27290C
  43. Bachthaler, S., Sadlo, F., Weeber, R., Kantorovich, S., Holm, C., & Weiskopf, D. (2012). Magnetic Flux Topology of 2D Point Dipoles. Computer Graphics Forum, 31(3pt1), Article 3pt1. https://doi.org/10.1111/j.1467-8659.2012.03088.x
  44. Weeber, R., Kantorovich, S., & Holm, C. (2012). Deformation mechanisms in 2D magnetic gels studied by computer simulations. Soft Matter, 8(38), Article 38. https://doi.org/10.1039/C2SM26097B
  45. Weeber, R., Kantorovich, S., & Holm, C. (2012). Deformation mechanisms in 2D magnetic gels studied by computer simulations. Soft Matter, 8(38), Article 38. https://doi.org/10.1039/C2SM26097B
  46. Bachthaler, S., Sadlo, F., Weeber, R., Kantorovich, S., Holm, C., & Weiskopf, D. (2012). Magnetic Flux Topology of 2D Point Dipoles. Computer Graphics Forum, 31(3pt1), Article 3pt1. https://doi.org/10.1111/j.1467-8659.2012.03088.x
  47. Kantorovich, S., Weeber, R., Cerdà, J. J., & Holm, C. (2011). Magnetic particles with shifted dipoles. Journal of Magnetism and Magnetic Materials, 323(10), Article 10. https://doi.org/10.1016/j.jmmm.2010.11.019
  48. Klinkigt, M., Weeber, R., Kantorovich, S., & Holm, C. (2011). System of particles with shifted magnetic dipoles. Magnetohydrodynamics, 47(2), Article 2. http://mhd.sal.lv/contents/2011/2/MG.47.2.5.R.html
  49. Gutsche, C., Elmahdy, M. M., Kegler, K., Semenov, I., Stangner, T., Otto, O., Ueberschär, O., Keyser, U. F., Krueger, M., Rauscher, M., Weeber, R., Harting, J., Kim, Y. W., Lobaskin, V., Netz, R. R., & Kremer, F. (2011). Micro-rheology on (polymer-grafted) colloids using optical tweezers. Journal of Physics: Condensed Matter, 23(18), Article 18. https://doi.org/10.1088/0953-8984/23/18/184114
  50. Klinkigt, M., Weeber, R., Kantorovich, S., & Holm, C. (2011). System of particles with shifted magnetic dipoles. Magnetohydrodynamics, 47(2), Article 2. http://mhd.sal.lv/contents/2011/2/MG.47.2.5.R.html
  51. Gutsche, C., Elmahdy, M. M., Kegler, K., Semenov, I., Stangner, T., Otto, O., Ueberschär, O., Keyser, U. F., Krueger, M., Rauscher, M., Weeber, R., Harting, J., Kim, Y. W., Lobaskin, V., Netz, R. R., & Kremer, F. (2011). Micro-rheology on (polymer-grafted) colloids using optical tweezers. Journal of Physics: Condensed Matter, 23(18), Article 18. https://doi.org/10.1088/0953-8984/23/18/184114
  52. Kunert, C., & Harting, J. (2011). Lattice Boltzmann simulations of liquid film drainage between smooth surfaces. IMA Journal of Applied Mathematics, 76(5), Article 5. https://doi.org/10.1093/imamat/hxr001
  53. Kunert, C., & Harting, J. (2011). Lattice Boltzmann simulations of liquid film drainage between smooth surfaces. IMA Journal of Applied Mathematics, 76(5), Article 5. https://doi.org/10.1093/imamat/hxr001
  54. Kantorovich, S., Weeber, R., Cerdà, J. J., & Holm, C. (2011). Magnetic particles with shifted dipoles. Journal of Magnetism and Magnetic Materials, 323(10), Article 10. https://doi.org/10.1016/j.jmmm.2010.11.019
  55. Kantorovich, S., Weeber, R., Cerda, J. J., & Holm, C. (2011). Ferrofluids with shifted dipoles: ground state structures. Soft Matter, 7(11), Article 11. https://doi.org/10.1039/C1SM05186E
  56. Kantorovich, S., Weeber, R., Cerda, J. J., & Holm, C. (2011). Ferrofluids with shifted dipoles: ground state structures. Soft Matter, 7(11), Article 11. https://doi.org/10.1039/C1SM05186E
  57. Gutsche, C., Kremer, F., Krüger, M., Rauscher, M., Weeber, R., & Harting, J. (2008). Colloids dragged through a polymer solution: Experiment, theory, and simulation. The Journal of Chemical Physics, 129(8), Article 8. https://doi.org/10.1063/1.2965127
  58. Harting, J., Zauner, T., Weeber, R., & Hilfer, R. (2008). Flow in porous media and driven colloidal suspensions.
  59. Gutsche, C., Kremer, F., Krüger, M., Rauscher, M., Weeber, R., & Harting, J. (2008). Colloids dragged through a polymer solution: Experiment, theory, and simulation. The Journal of Chemical Physics, 129(8), Article 8. https://doi.org/10.1063/1.2965127
  60. Harting, J., Zauner, T., Weeber, R., & Hilfer, R. (2008). Flow in porous media and driven colloidal suspensions.
  61. Harting, J., Hecht, M., Kunert, C., & Weeber, R. (2007). Mesoscopic simulations of particle-laden flows. InSide, 5(2), Article 2.
  62. Harting, J., Hecht, M., Kunert, C., & Weeber, R. (2007). Mesoscopic simulations of particle-laden flows. InSide, 5(2), Article 2.
  • 2000: Abitur with majors in politics and physics
  • 2000 - 2008: Studies of physics at the University of Stuttgart
Specializations: Simulation methods, electronic structure of condensed matter
Diplomarbeit: "Dynamical simulation of colloids and their interactions" concerning local jamming effects in optical tweezer experiments.
Advisor: J. Harting
  • 2008: Research assistant at the Insitute for Computational Physics, University of Stuttgart
Work on fluid-particle coupling schemes in SRD/MD simulations
  • 2008: Intern at the German Aerospace Center in the Department of Systems Analysis and Technology Assessment
Agent-based simulations on the market integration of renewable energies
  • 2008 - 2009: Researcher in the same group
  • 2009 - 2015: Doctoral researcher at the Institute for Computational Physics and in the graduate school of the Stuttgart Research Center for Simulation Technology, University of Stuttgart
Thesis: "Simulation of novel soft magnetic materials"
Advisor: C. Holm
  • since 2015: Postdoc in the same group
Work on magnetic gels and elastomers
To the top of the page