Publications

Publications of the Institute

  1. 2024

    1. Zills, F., Schäfer, M. R., Segreto, N., Kästner, J., Holm, C., & Tovey, S. (2024). Collaboration on Machine-Learned Potentials with IPSuite: A Modular Framework for Learning-on-the-Fly. The Journal of Physical Chemistry B. https://doi.org/10.1021/acs.jpcb.3c07187
    2. Tovey, S., Holm, C., & Spannowsky, M. (2024). Generating Reservoir State Descriptions with Random Matrices. https://doi.org/arXiv:2404.07278
    3. Berberich, J., Fink, D., & Holm, C. (2024). Robustness of quantum algorithms against coherent control errors. Phys. Rev. A, 109(1), Article 1. https://doi.org/10.1103/PhysRevA.109.012417
    4. Zills, F., Schäfer, M. R., Tovey, S., Kästner, J., & Holm, C. (2024). Machine Learning-Driven Investigation of the Structure and Dynamics of the BMIM-BF₄ Room Temperature Ionic Liquid. Faraday Discuss. https://doi.org/10.1039/D4FD00025K
    5. Tovey, S., Lohrmann, C., Merkt, T., Zimmer, D., Nikolaou, K., Koppenhöfer, S., Bushmakina, A., Scheunemann, J., & Holm, C. (2024). SwarmRL: Building the Future of Smart Active Systems. https://doi.org/10.48550/arXiv.2404.16388
    6. Brito, M. E., & Holm, C. (2024). Modelling microgel swelling: Influence of chain finite extensibility. https://doi.org/10.26434/chemrxiv-2024-h8q4c
    7. Elijošius, R., Zills, F., Batatia, I., Norwood, S. W., Kovács, D. P., Holm, C., & Csányi, G. (2024). Zero Shot Molecular Generation via Similarity Kernels. https://doi.org/10.48550/arXiv.2402.08708
    8. Uhlig, F., Tovey, S., & Holm, C. (2024). Emergence of Accurate Atomic Energies from Machine Learned Noble Gas Potentials.
    9. Zills, F., Schäfer, M., Tovey, S., Kästner, J., & Holm, C. (2024). ZnTrack -- Data as Code. https://doi.org/10.48550/arXiv.2401.10603
    10. Lohrmann, C., Holm, C., & Datta, S. S. (2024). Influence of bacterial swimming and hydrodynamics on infection by phages. BioRxiv. https://doi.org/10.1101/2024.01.15.575727
    11. Tovey, S., Lohrmann, C., & Holm, C. (2024). Emergence of Chemotactic Strategies with Multi-Agent Reinforcement Learning. https://doi.org/10.48550/arXiv.2404.01999
  2. 2023

    1. Beyer, D., & Holm, C. (2023). A generalized grand-reaction method for modeling the exchange of weak (polyprotic) acids between a solution and a weak polyelectrolyte phase. The Journal of Chemical Physics, 159(1), Article 1. https://doi.org/10.1063/5.0155973
    2. Sufi, S., Martinez-Ortiz, C., Doorn, P., Farrell, J., Barker, M., Katz, D. S., Jackson, A., Struck, A., Sandeman, A., Stewart, A., Terrel, A. R., Companjen, B., Haupt, C., Strasser, C., Goble, C., Chavez, C. V. F. G., Venters, C., Dietrich, D., Colón-Marrero, E., … Rampin, V. (2023). Report on the Workshop on Sustainable Software                    Sustainability 2021 (WoSSS21). Zenodo. https://doi.org/10.5281/zenodo.7951155
    3. Weeber, R., Kreissl, P., & Holm, C. (2023). Magnetic field controlled behavior of magnetic gels studied using particle-based simulations. Physical Sciences Reviews, 8(8), Article 8. https://doi.org/doi:10.1515/psr-2019-0106
    4. Beyer, D., Koss\fiovan, P., & Holm, C. (2023). Explaining Giant Apparent $pK_a$ Shifts in Weak Polyelectrolyte Brushes. Phys. Rev. Lett., 131(16), Article 16. https://doi.org/10.1103/PhysRevLett.131.168101
    5. Berberich, J., Fink, D., & Holm, C. (2023). Robustness of quantum algorithms against coherent control errors. https://doi.org/10.48550/arXiv.2303.00618
    6. Tovey, S., Zills, F., Torres-Herrador, F., Lohrmann, C., Brückner, M., & Holm, C. (2023). MDSuite: comprehensive post-processing tool for particle simulations. Journal of Cheminformatics, 15(1), Article 1. https://doi.org/10.1186/s13321-023-00687-y
    7. Tovey, S., Zimmer, D., Lohrmann, C., Merkt, T., Koppenhoefer, S., Heuthe, V.-L., Bechinger, C., & Holm, C. (2023). Environmental effects on emergent strategy in micro-scale multi-agent reinforcement learning. https://doi.org/10.48550/arXiv.2307.00994
    8. Brito, M. E., Mikhtaniuk, S. E., Neelov, I. M., Borisov, O. V., & Holm, C. (2023). Implicit-Solvent Coarse-Grained Simulations of Linear–Dendritic Block Copolymer Micelles. International Journal of Molecular Sciences, 24(3), Article 3. https://doi.org/10.3390/ijms24032763
    9. Shavykin, O. V., Mikhtaniuk, S. E., Fatullaev, E. I., Neelov, I. M., Leermakers, F. A. M., Brito, M. E., Holm, C., Borisov, O. V., & Darinskii, A. A. (2023). Hybrid Molecules Consisting of Lysine Dendrons with Several Hydrophobic Tails: A SCF Study of Self-Assembling. International Journal of Molecular Sciences, 24(3), Article 3. https://doi.org/10.3390/ijms24032078
    10. Weeber, R., Grad, J.-N., Beyer, D., Blanco, P. M., Kreissl, P., Reinauer, A., Tischler, I., Košovan, P., & Holm, C. (2023). ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-821978-2.00103-3
    11. Gravelle, S., Beyer, D., Brito, M., Schlaich, A., & Holm, C. (2023). Assessing the validity of NMR relaxation rates obtained from coarse-grained simulations of PEG-water mixtures. https://doi.org/10.26434/chemrxiv-2022-f90tv-v4
    12. Košovan, P., Landsgesell, J., Nová, L., Uhlík, F., Beyer, D., Blanco, P. M., Staňo, R., & Holm, C. (2023). Reply to the ‘Comment on “Simulations of ionization equilibria in weak polyelectrolyte solutions and gels”’ by J. Landsgesell, L. Nová, O. Rud, F. Uhlík, D. Sean, P. Hebbeker, C. Holm and P. Košovan, Soft Matter, 2019, 15, 1155–1185. Soft Matter, 19(19), Article 19. https://doi.org/10.1039/D3SM00155E
    13. Lohrmann, C., & Holm, C. (2023). A novel model for biofilm initiation in porous media flow. Soft Matter, 19(36), Article 36. https://doi.org/10.1039/D3SM00575E
    14. Yang, J., Kondrat, S., Lian, C., Liu, H., Schlaich, A., & Holm, C. (2023). Solvent Effects on Structure and Screening in Confined Electrolytes. Phys. Rev. Lett., 131(11), Article 11. https://doi.org/10.1103/PhysRevLett.131.118201
    15. Qiao, L., Szuttor, K., Holm, C., & Slater, G. W. (2023). Ratcheting Charged Polymers through Symmetric Nanopores Using Pulsed Fields: Designing a Low Pass Filter for Concentrating Polyelectrolytes. Nano Letters, 23(4), Article 4. https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04588
    16. Finkbeiner, J., Tovey, S., & Holm, C. (2023). Generating Minimal Training Sets for Machine Learned Potentials. https://doi.org/10.48550/arXiv.2309.03840
    17. Tischler, I., Schlaich, A., & Holm, C. (2023). Disentanglement of Surface and Confinement Effects for Diene Metathesis in Mesoporous Confinement. ACS Omega, 9(1), Article 1. https://doi.org/10.1021/acsomega.3c06195
    18. Gravelle, S., Haber-Pohlmeier, S., Mattea, C., Stapf, S., Holm, C., & Schlaich, A. (2023). NMR Investigation of Water in Salt Crusts: Insights from Experiments and Molecular Simulations. Langmuir, 39(22), Article 22. https://doi.org/10.1021/acs.langmuir.3c00036
    19. Schlaich, A., Tyagi, S., Kesselheim, S., Sega, M., & Holm, C. (2023). Renormalized charge and dielectric effects in colloidal interactions: a numerical solution of the nonlinear Poisson--Boltzmann equation for unknown boundary conditions. The European Physical Journal E, 46(9), Article 9. https://doi.org/10.1140/epje/s10189-023-00334-2
    20. Berberich, J., Fink, D., Pranjić, D., Tutschku, C., & Holm, C. (2023). Training robust and generalizable quantum models. https://doi.org/10.48550/arXiv.2311.11871
    21. Artemov, V., Frank, L., Doronin, R., Stärk, P., Schlaich, A., Andreev, A., Leisner, T., Radenovic, A., & Kiselev, A. (2023). The Three-Phase Contact Potential Difference Modulates the Water Surface Charge. The Journal of Physical Chemistry Letters, 14(20), Article 20. https://doi.org/10.1021/acs.jpclett.3c00479
    22. Bolik, S., Schlaich, A., Mukhina, T., Amato, A., Bastien, O., Schneck, E., Demé, B., & Jouhet, J. (2023). The possible role of lipid bilayer properties in the evolutionary disappearance of betaine lipids in seed plants. BioRxiv. https://doi.org/10.1101/2023.01.24.525350
    23. Kreissl, P., Holm, C., & Weeber, R. (2023). Interplay between steric and hydrodynamic interactions for ellipsoidal magnetic nanoparticles in a polymer suspension. Soft Matter, 19(6), Article 6. https://doi.org/10.1039/D2SM01428A
    24. Gravelle, S., Beyer, D., Brito, M., Schlaich, A., & Holm, C. (2023). Assessing the Validity of NMR Relaxation Rates Obtained from Coarse-Grained Simulations of PEG–Water Mixtures. The Journal of Physical Chemistry B, 127(25), Article 25. https://doi.org/10.1021/acs.jpcb.3c01646
    25. Jäger, H., Schlaich, A., Yang, J., Lian, C., Kondrat, S., & Holm, C. (2023). A screening of results on the decay length in concentrated electrolytes. Faraday Discuss., 246(0), Article 0. https://doi.org/10.1039/D3FD00043E
    26. Lohrmann, C., & Holm, C. (2023). Optimal motility strategies for self-propelled agents to explore porous media. https://doi.org/10.48550/arXiv.2302.06709
    27. Tovey, S., Krippendorf, S., Nikolaou, K., & Holm, C. (2023). Towards a Phenomenological Understanding of Neural Networks: Data. https://doi.org/10.48550/arXiv.2305.00995
  3. 2022

    1. Wang, W., Gardi, G., Malgaretti, P., Kishore, V., Koens, L., Son, D., Gilbert, H., Wu, Z., Harwani, P., Lauga, E., Holm, C., & Sitti, M. (2022). Order and information in the patterns of spinning magnetic micro-disks at the air-water interface. Science Advances, 8(2), Article 2. https://doi.org/10.1126/sciadv.abk0685
    2. Beyer, D., Landsgesell, J., Hebbeker, P., Rud, O., Lunkad, R., Kosovan, P., & Holm, C. (2022). Correction to “Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning.” Macromolecules, 55(3), Article 3. https://doi.org/10.1021/acs.macromol.1c02672
    3. Tischler, I., Weik, F., Kaufmann, R., Kuron, M., Weeber, R., & Holm, C. (2022). A thermalized electrokinetics model including stochastic reactions suitable for multiscale simulations of reaction–advection–diffusion systems. Journal of Computational Science, 63, 101770. https://doi.org/10.1016/j.jocs.2022.101770
    4. Landsgesell, J., Beyer, D., Hebbeker, P., Kosovan, P., & Holm, C. (2022). The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. Macromolecules, 55(8), Article 8. https://doi.org/10.1021/acs.macromol.1c02489
    5. Gravelle, S., Beyer, D., Brito, M., Schlaich, A., & Holm, C. (2022). Preprint: Reconstruction of NMR Relaxation Rates from Coarse-Grained Polymer Simulations. https://doi.org/10.26434/chemrxiv-2022-f90tv
    6. Artemov, V., Frank, L., Doronin, R., Stärk, P., Schlaich, A., Andreev, A., Leisner, T., Radenovic, A., & Kiselev, A. (2022). Preprint: Elucidating contact electrification mechanism of water.
    7. Lamprecht, A.-L., Martinez-Ortiz, C., Barker, M., Bartholomew, S. L., Barton, J., Hong, N. C., Cohen, J., Druskat, S., Forest, J., Grad, J.-N., Katz, D. S., Richardson, R., Rosca, R., Schulte, D., Struck, A., & Weinzierl, M. (2022). What Do We (Not) Know About Research Software Engineering? Journal of Open Research Software, 10. https://doi.org/10.5334/jors.384
    8. Beyer, D., Kosovan, P., & Holm, C. (2022). Simulations Explain the Swelling Behavior of Hydrogels with Alternating Neutral and Weakly Acidic Blocks. Macromolecules, 55(23), Article 23. https://doi.org/10.1021/acs.macromol.2c01916
    9. Rafieiolhosseini, N., Killa, M., Neumann, T., Tötsch, N., Grad, J.-N., Höing, A., Dirksmeyer, T., Niemeyer, J., Ottmann, C., Knauer, S. K., Giese, M., Voskuhl, J., & Hoffmann, D. (2022). Computational model predicts protein binding sites of a luminescent ligand equipped with guanidiniocarbonyl-pyrrole groups. Beilstein Journal of Organic Chemistry, 18, 1322--1331. https://doi.org/10.3762/bjoc.18.137
    10. Tischler, I., Weik, F., Kaufmann, R., Kuron, M., Weeber, R., & Holm, C. (2022). A thermalized electrokinetics model including stochastic reactions suitable for multiscale simulations of reaction-advection-diffusion systems. Journal of Computational Science, 63, 101770. https://doi.org/10.1016/j.jocs.2022.101770
  4. 2021

    1. Carral, Á. D., Ostertag, M., & Fyta, M. (2021). Deep learning for nanopore ionic current blockades. The Journal of Chemical Physics, 154(4), Article 4. https://doi.org/10.1063/5.0037938
    2. Atanasova, P., Dou, M., Kousik, S. R., Bill, J., & Fyta, M. (2021). Adsorption of azide-functionalized thiol linkers on zinc oxide surfaces. RSC Adv., 11(10), Article 10. https://doi.org/10.1039/D0RA05127F
    3. Itto, Y. (2021). Fluctuating Diffusivity of RNA-Protein Particles: Analogy with Thermodynamics. Entropy, 23(3), Article 3. https://doi.org/10.3390/e23030333
    4. Itto, Y., & Beck, C. (2021). Superstatistical modelling of protein diffusion dynamics in bacteria. Journal of The Royal Society Interface, 18(176), Article 176. https://doi.org/10.1098/rsif.2020.0927
    5. Finkbeiner, J., Tovey, S., & Holm, C. (2021). Efficient Data Selection Methods for the Development of Machine Learned Potentials. ArXiv, abs/2108.01582.
    6. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01586-2
    7. Szuttor, K., Kreissl, P., & Holm, C. (2021). A numerical investigation of analyte size effects in nanopore sensing systems. The Journal of Chemical Physics, 155(13), Article 13. https://doi.org/10.1063/5.0065085
    8. Zeman, J., Kondrat, S., & Holm, C. (2021). Ionic screening in bulk and under confinement. The Journal of Chemical Physics, 155(20), Article 20. https://doi.org/10.1063/5.0069340
    9. Bindgen, S., Weik, F., Weeber, R., Koos, E., & de Buyl, P. (2021). Lees–Edwards boundary conditions for translation invariant shear flow: Implementation and transport properties. Physics of Fluids, 33(8), Article 8. https://doi.org/10.1063/5.0055396
    10. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2021). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.2
    11. Tagliabue, A., Landsgesell, J., Mella, M., & Holm, C. (2021). Can oppositely charged polyelectrolyte stars form a gel? A simulational study. Soft Matter. https://doi.org/10.1039/D0SM01617A
    12. Bauer, M., Eibl, S., Godenschwager, C., Kohl, N., Kuron, M., Rettinger, C., Schornbaum, F., Schwarzmeier, C., Thönnes, D., Köstler, H., & Rüde, U. (2021). waLBerla: A block-structured high-performance framework for multiphysics simulations. Computers & Mathematics with Applications, 81, 478--501. https://doi.org/10.1016/j.camwa.2020.01.007
    13. Szuttor, K., Weik, F., Grad, J.-N., & Holm, C. (2021). Modeling the current modulation of bundled DNA structures in nanopores. The Journal of Chemical Physics, 154(5), Article 5. https://doi.org/10.1063/5.0038530
    14. Lee, M., Lohrmann, C., Szuttor, K., Auradou, H., & Holm, C. (2021). The influence of motility on bacterial accumulation in a microporous channel. Soft Matter. https://doi.org/10.1039/D0SM01595D
    15. Riede, J. M., Holm, C., Schmitt, S., & Haeufle, D. F. B. (2021). The control effort to steer self-propelled microswimmers depends on their morphology: comparing symmetric spherical versus asymmetric              L              -shaped particles. Royal Society Open Science, 8(9), Article 9. https://doi.org/10.1098/rsos.201839
    16. Rud, O. V., Landsgesell, J., Holm, C., & Kosovan, P. (2021). Modeling of weak polyelectrolyte hydrogels under compression – Implications for water desalination. Desalination, 506, 114995. https://doi.org/10.1016/j.desal.2021.114995
    17. Kreissl, P., Holm, C., & Weeber, R. (2021). Frequency-dependent magnetic susceptibility of magnetic nanoparticles in a polymer solution: a simulation study. Soft Matter, 17(1), Article 1. https://doi.org/10.1039/D0SM01554G
    18. Feuerstein, L., Biermann, C. G., Xiao, Z., Holm, C., & Simmchen, J. (2021). Highly Efficient Active Colloids Driven by Galvanic Exchange Reactions. Journal of the American Chemical Society, 143(41), Article 41. https://doi.org/10.1021/jacs.1c06400
    19. Stano, R., Kosovan, P., Tagliabue, A., & Holm, C. (2021). Electrostatically Cross-Linked Reversible Gels—Effects of pH and Ionic Strength. Macromolecules, 54(10), Article 10. https://doi.org/10.1021/acs.macromol.1c00470
    20. Kuron, M., Stewart, C., de Graaf, J., & Holm, C. (2021). An extensible lattice Boltzmann method for viscoelastic flows: complex and moving boundaries in Oldroyd-B fluids. https://doi.org/10.1140/epje/s10189-020-00005-6
    21. Itto, Y., & Beck, C. (2021). Weak correlation between fluctuations in protein diffusion inside bacteria. Journal of Physics: Conference Series, 2090(1), Article 1. https://doi.org/10.1088/1742-6596/2090/1/012168
    22. Riede, J. M., Holm, C., Schmitt, S., & Haeufle, D. F. B. (2021). The control effort to steer self-propelled microswimmers depends on their morphology: comparing symmetric spherical versus asymmetric              $łess$i$\greater$L$łess$/i$\greater$              -shaped particles. Royal Society Open Science, 8(9), Article 9. https://doi.org/10.1098/rsos.201839
  5. 2020

    1. Sarap, C. S., Putra, M. H., & Fyta, M. (2020). Domain-size effect on the electronic properties of two-dimensional $MoS_2/WS_2$. Phys. Rev. B, 101(7), Article 7. https://doi.org/10.1103/PhysRevB.101.075129
    2. Hilfer, R., & Kleiner, T. (2020). Maximal Domains for Fractional Derivatives and Integrals. Mathematics, 8(7), Article 7. https://doi.org/10.3390/math8071107
    3. Sivaraman, G., Krishnamoorthy, A. N., Baur, M., Holm, C., Stan, M., Csányi, G., Benmore, C., & Vázquez-Mayagoitia, Á. (2020). Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide. Npj Computational Materials, 6(1), Article 1. https://doi.org/10.1038/s41524-020-00367-7
    4. Breitsprecher, K., Janssen, M., Srimuk, P., Mehdi, B. L., Presser, V., Holm, C., & Kondrat, S. (2020). How to speed up ion transport in nanopores. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-19903-6
    5. Landsgesell, J., Hebbeker, P., Rud, O., Lunkad, R., Kosovan, P., & Holm, C. (2020). Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules, 53(8), Article 8. https://doi.org/10.1021/acs.macromol.0c00260
    6. Zeman, J., Kondrat, S., & Holm, C. (2020). Bulk ionic screening lengths from extremely large-scale molecular dynamics simulations. Chem. Commun., 56(100), Article 100. https://doi.org/10.1039/D0CC05023G
    7. Dou, M., & Fyta, M. (2020). Lithium adsorption on 2D transition metal dichalcogenides: towards a descriptor for machine learned materials design. J. Mater. Chem. A, 8(44), Article 44. https://doi.org/10.1039/D0TA04834H
    8. de Souza, F. A. L., Sivaraman, G., Fyta, M., Scheicher, R. H., Scopel, W. L., & Amorim, R. G. (2020). Electrically sensing Hachimoji DNA nucleotides through a hybrid graphene/h-BN nanopore. Nanoscale, 12(35), Article 35. https://doi.org/10.1039/D0NR04363J
    9. Tovey, S., Krishnamoorthy, A. N., Sivaraman, G., Guo, J., Benmore, C., Heuer, A., & Holm, C. (2020). DFT Accurate Interatomic Potential for Molten NaCl from Machine Learning. The Journal of Physical Chemistry C, 124(47), Article 47. https://doi.org/10.1021/acs.jpcc.0c08870
    10. Sánchez, P. A., Vögele, M., Smiatek, J., Qiao, B., Sega, M., & Holm, C. (2020). PDADMAC/PSS Oligoelectrolyte Multilayers: Internal Structure and Hydration Properties at Early Growth Stages from Atomistic Simulations. Molecules, 25(8), Article 8. https://doi.org/10.3390/molecules25081848
    11. Maier, F. C., & Fyta, M. (2020). Functionalized Nanogap for DNA Read-Out: Nucleotide Rotation and Current-Voltage Curves. ChemPhysChem, 21(18), Article 18. https://doi.org/10.1002/cphc.202000391
    12. Landsgesell, J., Sean, D., Kreissl, P., Szuttor, K., & Holm, C. (2020). Erratum: Modeling Gel Swelling Equilibrium in the Mean Field: From Explicit to Poisson-Boltzmann Models Phys. Rev. Lett. 122, 208002 (2019). Phys. Rev. Lett., 124(11), Article 11. https://doi.org/10.1103/PhysRevLett.124.119901
    13. Tischler, I., Schlaich, A., & Holm, C. (2020). The Presence of a Wall Enhances the Probability for Ring-Closing Metathesis: Insights from Classical Polymer Theory and Atomistic Simulations. Macromolecular Theory and Simulations, 2000076. https://doi.org/10.1002/mats.202000076
    14. Kobayashi, T., Kraus, H., Hansen, N., & Fyta, M. (2020). Confined Ru-catalysts in a Two-phase Heptane/Ionic Liquid Solution: Modeling Aspects. ChemCatChem, 13(2), Article 2. https://doi.org/10.1002/cctc.202001596
    15. Flemisch, B., Hermann, S., Holm, C., Mehl, M., Reina, G., Uekermann, B., Boehringer, D., Ertl, T., Grad, J.-N., Iglezakis, D., Jaust, A., Koch, T., Seeland, A., Weeber, R., Weik, F., & Weishaupt, K. (2020). Umgang mit Forschungssoftware an der Universität Stuttgart. Universität Stuttgart. https://doi.org/10.18419/OPUS-11178
    16. Kleiner, T., & Hilfer, R. (2020). Convolution operators on weighted spaces of continuous functions and supremal convolution. Annali Di Matematica Pura Ed Applicata (1923 -), 199(4), Article 4. https://doi.org/10.1007/s10231-019-00931-z
  6. 2019

    1. Sarap, C. S., Partovi-Azar, P., & Fyta, M. (2019). Enhancing the optical detection of mutants from healthy DNA with diamondoids. J. Mater. Chem. B, 7(21), Article 21. https://doi.org/10.1039/C9TB00122K
    2. Carral, A. D., Sarap, C. S., Liu, K., Radenovic, A., & Fyta, M. (2019). 2D MoS2 nanopores: ionic current blockade height for clustering DNA events. 2D Materials, 6(4), Article 4. https://doi.org/10.1088/2053-1583/ab2c38
    3. Kuron, M., Stärk, P., Burkard, C., de Graaf, J., & Holm, C. (2019). A lattice Boltzmann model for squirmers. The Journal of Chemical Physics, 150(14), Article 14. https://doi.org/10.1063/1.5085765
    4. Holm, C., Ertl, T., Schmauder, S., Kästner, J., & Gross, J. (2019). Particle methods in natural science and engineering. The European Physical Journal Special Topics, 227(14), Article 14. https://doi.org/10.1140/epjst/e2019-900008-2
    5. Lee, M., Szuttor, K., & Holm, C. (2019). A computational model for bacterial run-and-tumble motion. The Journal of Chemical Physics, 150(17), Article 17. https://doi.org/10.1063/1.5085836
    6. Sánchez, P. A., Vögele, M., Smiatek, J., Qiao, B., Sega, M., & Holm, C. (2019). Atomistic simulation of PDADMAC/PSS oligoelectrolyte multilayers: overall comparison of tri- and tetra-layer systems. Soft Matter, 15(46), Article 46. https://doi.org/10.1039/C9SM02010A
    7. Zeman, J., Holm, C., & Smiatek, J. (2019). The Effect of Small Organic Cosolutes on Water Structure and Dynamics. Journal of Chemical & Engineering Data, 65(3), Article 3. https://doi.org/10.1021/acs.jced.9b00577
    8. Dou, M., Maier, F. C., & Fyta, M. (2019). The influence of a solvent on the electronic transport across diamondoid-functionalized biosensing electrodes. Nanoscale, 11(30), Article 30. https://doi.org/10.1039/C9NR03235E
    9. Partovi-Azar, P., Sarap, C. S., & Fyta, M. (2019). In silico Complexes of Amino Acids and Diamondoids. ChemPhysChem, 20(17), Article 17. https://doi.org/10.1002/cphc.201900394
    10. de Souza, F. A. L., Sivaraman, G., Hertkorn, J., Amorim, R. G., Fyta, M., & Scopel, W. L. (2019). Hybrid 2D nanodevices (graphene/h-BN): selecting NOx gas through the device interface. J. Mater. Chem. A, 7(15), Article 15. https://doi.org/10.1039/C9TA00674E
    11. Landsgesell, J., & Holm, C. (2019). Cell Model Approaches for Predicting the Swelling and Mechanical Properties of Polyelectrolyte Gels. Macromolecules, 52(23), Article 23. https://doi.org/10.1021/acs.macromol.9b01216
    12. Kuron, M., Stärk, P., Holm, C., & de Graaf, J. (2019). Hydrodynamic mobility reversal of squirmers near flat and curved surfaces. Soft Matter, 15(29), Article 29. https://doi.org/10.1039/C9SM00692C
    13. Landsgesell, J., Nová, L., Rud, O., Uhlík, F., Sean, D., Hebbeker, P., Holm, C., & Košovan, P. (2019). Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter, 15(6), Article 6. https://doi.org/10.1039/C8SM02085J
    14. Landsgesell, J., Sean, D., Kreissl, P., Szuttor, K., & Holm, C. (2019). Modeling Gel Swelling Equilibrium in the Mean Field: From Explicit to Poisson-Boltzmann Models. Phys. Rev. Lett., 122(20), Article 20. https://doi.org/10.1103/PhysRevLett.122.208002
    15. Arens, L., Barther, D., Landsgesell, J., Holm, C., & Wilhelm, M. (2019). Poly(sodium acrylate) hydrogels: synthesis of various network architectures, local molecular dynamics, salt partitioning, desalination and simulation. Soft Matter, 15(48), Article 48. https://doi.org/10.1039/C9SM01468C
    16. Weeber, R., Nestler, F., Weik, F., Pippig, M., Potts, D., & Holm, C. (2019). Accelerating the calculation of dipolar interactions in particle based simulations with open boundary conditions by means of the P2NFFT method. Journal of Computational Physics, 391, 243--258. https://doi.org/10.1016/j.jcp.2019.01.044
    17. Weik, F., Szuttor, K., Landsgesell, J., & Holm, C. (2019). Modeling the current modulation of dsDNA in nanopores -- from mean-field to atomistic and back. The European Physical Journal Special Topics, 227(14), Article 14. https://doi.org/10.1140/epjst/e2019-800189-3
    18. Weeber, R., Kreissl, P., & Holm, C. (2019). Studying the field-controlled change of shape and elasticity of magnetic gels using particle-based simulations. Archive of Applied Mechanics, 89(1), Article 1. https://doi.org/10.1007/s00419-018-1396-4
    19. Roy, T., Szuttor, K., Smiatek, J., Holm, C., & Hardt, S. (2019). Conformation and Dynamics of Long-Chain End-Tethered Polymers in Microchannels. Polymers, 11(3), Article 3. https://doi.org/10.3390/polym11030488
    20. Hertkorn, J., & Fyta, M. (2019). Electronic features of vacancy, nitrogen, and phosphorus defects in nanodiamonds. Electronic Structure, 1(2), Article 2. https://doi.org/10.1088/2516-1075/ab177b
    21. Schleicher, M., & Fyta, M. (2019). Lateral MoS2 Heterostructure for Sensing Small Gas Molecules. ACS Applied Electronic Materials, 2(1), Article 1. https://doi.org/10.1021/acsaelm.9b00495
    22. Weik, F., Weeber, R., Szuttor, K., Breitsprecher, K., de Graaf, J., Kuron, M., Landsgesell, J., Menke, H., Sean, D., & Holm, C. (2019). ESPResSo 4.0 -- an extensible software package for simulating soft matter systems. The European Physical Journal Special Topics, 227(14), Article 14. https://doi.org/10.1140/epjst/e2019-800186-9
    23. Chen, G., Liu, W., Widenmeyer, M., Ying, P., Dou, M., Xie, W., Bubeck, C., Wang, L., Fyta, M., Feldhoff, A., & Weidenkaff, A. (2019). High flux and CO2-resistance of La0.6Ca0.4Co1–Fe O3- oxygen-transporting membranes. Journal of Membrane Science, 590, 117082. https://doi.org/10.1016/j.memsci.2019.05.007
    24. Hilfer, R., & Luchko, Y. (2019). Desiderata for Fractional Derivatives and Integrals. Mathematics, 7(2), Article 2. https://doi.org/10.3390/math7020149
    25. Hilfer, R. (2019). Excess wing physics and nearly constant loss in glasses. Journal of Statistical Mechanics: Theory and Experiment, 2019(10), Article 10. https://doi.org/10.1088/1742-5468/ab38bc
    26. Maier, F. C., Hocker, S., Schmauder, S., & Fyta, M. (2019). Interplay of structural, electronic, and transport features in copper alloys. Journal of Alloys and Compounds, 777, 619--626. https://doi.org/10.1016/j.jallcom.2018.10.340
    27. Smiljanic, M., Weeber, R., Pflüger, D., Holm, C., & Kronenburg, A. (2019). Developing coarse-grained models for agglomerate growth. The European Physical Journal Special Topics, 227(14), Article 14. https://doi.org/10.1140/epjst/e2018-800177-y
    28. Putra, M. H., & Fyta, M. (2019). Probing DNA nucleobases with diamond (111) surfaces. Journal of Physics Communications, 3(9), Article 9. https://doi.org/10.1088/2399-6528/ab3d7f
    29. Sean, D., Landsgesell, J., & Holm, C. (2019). Influence of weak groups on polyelectrolyte mobilities. ELECTROPHORESIS, 40(5), Article 5. https://doi.org/10.1002/elps.201800346
  7. 2018

    1. Liu, D., & Fyta, M. (2018). Hybrids made of defective nanodiamonds interacting with DNA nucleobases. Nanotechnology, 30(6), Article 6. https://doi.org/10.1088/1361-6528/aaf127
    2. Weeber, R., Hermes, M., Schmidt, A. M., & Holm, C. (2018). Polymer architecture of magnetic gels: a review. Journal of Physics: Condensed Matter, 30(6), Article 6. https://doi.org/10.1088/1361-648x/aaa344
    3. Michalowsky, J., Zeman, J., Holm, C., & Smiatek, J. (2018). A polarizable MARTINI model for monovalent ions in aqueous solution. The Journal of Chemical Physics, 149(16), Article 16. https://doi.org/10.1063/1.5028354
    4. Hartmann, J., Roy, T., Szuttor, K., Smiatek, J., Holm, C., & Hardt, S. (2018). Relaxation of surface-tethered polymers under moderate confinement. Soft Matter, 14(38), Article 38. https://doi.org/10.1039/C8SM01246F
    5. Weyman, A., Bier, M., Holm, C., & Smiatek, J. (2018). Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study. The Journal of Chemical Physics, 148(19), Article 19. https://doi.org/10.1063/1.5016814
    6. Sean, D., Landsgesell, J., & Holm, C. (2018). Computer Simulations of Static and Dynamical Properties of Weak Polyelectrolyte Nanogels in Salty Solutions. Gels, 4(1), Article 1. https://doi.org/10.3390/gels4010002
    7. Sarap, C. S., Partovi-Azar, P., & Fyta, M. (2018). Optoelectronic Properties of Diamondoid-DNA Complexes. ACS Applied Bio Materials, 1(1), Article 1. https://doi.org/10.1021/acsabm.8b00011
    8. Cruz-León, S., Vázquez-Mayagoitia, A., Melchionna, S., Schwierz, N., & Fyta, M. (2018). Coarse-Grained Double-Stranded RNA Model from Quantum-Mechanical Calculations. The Journal of Physical Chemistry B, 122(32), Article 32. https://doi.org/10.1021/acs.jpcb.8b03566
    9. Soni, H. R., & Fyta, M. (2018). Two-Dimensional Metallic/Semiconducting MoS2 under Biaxial Strain. ACS Applied Nano Materials, 1(10), Article 10. https://doi.org/10.1021/acsanm.8b01085
    10. Krishnamoorthy, A. N., Holm, C., & Smiatek, J. (2018). Influence of Cosolutes on Chemical Equilibrium: a Kirkwood–Buff Theory for Ion Pair Association–Dissociation Processes in Ternary Electrolyte Solutions. The Journal of Physical Chemistry C, 122(19), Article 19. https://doi.org/10.1021/acs.jpcc.7b12255
    11. Hilfer, R. (2018). Multiscale local porosity theory, weak limits, and dielectric response in composite and porous media. Journal of Mathematical Physics, 59(10), Article 10. https://doi.org/10.1063/1.5063466
    12. Smiatek, J., & Holm, C. (2018). From the Atomistic to the Macromolecular Scale: Distinct Simulation Approaches for Polyelectrolyte Solutions. In W. Andreoni & S. Yip (Eds.), Handbook of Materials Modeling : Methods: Theory and Modeling (pp. 1--15). Springer International Publishing. https://doi.org/10.1007/978-3-319-42913-7_33-1
    13. Uhlig, F., Zeman, J., Smiatek, J., & Holm, C. (2018). First-Principles Parametrization of Polarizable Coarse-Grained Force Fields for Ionic Liquids. Journal of Chemical Theory and Computation, 14(3), Article 3. https://doi.org/10.1021/acs.jctc.7b00903
    14. Kuron, M., Kreissl, P., & Holm, C. (2018). Toward Understanding of Self-Electrophoretic Propulsion under Realistic Conditions: From Bulk Reactions to Confinement Effects. Accounts of Chemical Research, 51(12), Article 12. https://doi.org/10.1021/acs.accounts.8b00285
    15. Narayanan Krishnamoorthy, A., Holm, C., & Smiatek, J. (2018). Specific ion effects for polyelectrolytes in aqueous and non-aqueous media: the importance of the ion solvation behavior. Soft Matter, 14(30), Article 30. https://doi.org/10.1039/C8SM00600H
    16. Breitsprecher, K., Holm, C., & Kondrat, S. (2018). Charge Me Slowly, I Am in a Hurry: Optimizing Charge–Discharge Cycles in Nanoporous Supercapacitors. ACS Nano, 12(10), Article 10. https://doi.org/10.1021/acsnano.8b04785
    17. Narayanan Kirshnamoorthy, A., Oldiges, K., Winter, M., Heuer, A., Cekic-Laskovic, I., Holm, C., & Smiatek, J. (2018). Electrolyte solvents for high voltage lithium ion batteries: ion correlation and specific anion effects in adiponitrile. Phys. Chem. Chem. Phys., 20(40), Article 40. https://doi.org/10.1039/C8CP04102D
    18. Sarap, C. S., Adhikari, B., Meng, S., Uhlig, F., & Fyta, M. (2018). Optical Properties of Single- and Double-Functionalized Small Diamondoids. The Journal of Physical Chemistry A, 122(14), Article 14. https://doi.org/10.1021/acs.jpca.7b12519
  8. 2017

    1. Zeman, J., Uhlig, F., Smiatek, J., & Holm, C. (2017). A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Journal of Physics: Condensed Matter. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1751
    2. Sivaraman, G., Amorim, R. G., Scheicher, R. H., & Fyta, M. (2017). Insights into the detection of mutations and epigenetic markers using diamondoid-functionalized sensors. RSC Adv., 7(68), Article 68. https://doi.org/10.1039/C7RA06889A
    3. Niu, R., Kreissl, P., Brown, A. T., Rempfer, G., Botin, D., Holm, C., Palberg, T., & de Graaf, J. (2017). Microfluidic pumping by micromolar salt concentrations. Soft Matter, 13(7), Article 7. https://doi.org/10.1039/C6SM02240E
    4. Inci, G., Kronenburg, A., Weeber, R., & Pflüger, D. (2017). Langevin Dynamics Simulation of Transport and Aggregation of Soot Nano-particles in Turbulent Flows. Flow, Turbulence and Combustion, 98(4), Article 4. https://doi.org/10.1007/s10494-016-9797-3
    5. Szuttor, K., Roy, T., Hardt, S., Holm, C., & Smiatek, J. (2017). The stretching force on a tethered polymer in pressure-driven flow. The Journal of Chemical Physics, 147(3), Article 3. https://doi.org/10.1063/1.4993619
    6. Smiatek, J. (2017). Aqueous ionic liquids and their effects on protein structures: an overview on recent theoretical and experimental results. Journal of Physics: Condensed Matter, 29(23), Article 23. https://doi.org/10.1088/1361-648X/aa6c9d
    7. Rau, T., Weik, F., & Holm, C. (2017). A dsDNA model optimized for electrokinetic applications. Soft Matter, 13(21), Article 21. https://doi.org/10.1039/C7SM00270J
    8. Breitsprecher, K., Abele, M., Kondrat, S., & Holm, C. (2017). The effect of finite pore length on ion structure and charging. The Journal of Chemical Physics, 147(10), Article 10. https://doi.org/10.1063/1.4986346
    9. Roy, T., Szuttor, K., Smiatek, J., Holm, C., & Hardt, S. (2017). Electric-field-induced stretching of surface-tethered polyelectrolytes in a microchannel. Phys. Rev. E, 96(3), Article 3. https://doi.org/10.1103/PhysRevE.96.032503
    10. Niskanen, J., Sahle, C. J., Gilmore, K., Uhlig, F., Smiatek, J., & Föhlisch, A. (2017). Disentangling structural information from core-level excitation spectra. Phys. Rev. E, 96(1), Article 1. https://doi.org/10.1103/PhysRevE.96.013319
    11. Diddens, D., Lesch, V., Heuer, A., & Smiatek, J. (2017). Aqueous ionic liquids and their influence on peptide conformations: denaturation and dehydration mechanisms. Phys. Chem. Chem. Phys., 19(31), Article 31. https://doi.org/10.1039/C7CP02897K
    12. Belyanchikov, M. A., Zhukova, E. S., Tretiak, S., Zhugayevych, A., Dressel, M., Uhlig, F., Smiatek, J., Fyta, M., Thomas, V. G., & Gorshunov, B. P. (2017). Vibrational states of nano-confined water molecules in beryl investigated by first-principles calculations and optical experiments. Phys. Chem. Chem. Phys., 19(45), Article 45. https://doi.org/10.1039/C7CP06472A
    13. Hilfer, R. (2017). Composite continuous time random walks. The European Physical Journal B, 90(12), Article 12. https://doi.org/10.1140/epjb/e2017-80369-y
    14. Uhlig, F., Smiatek, J., & Holm, C. (2017). Many-body effects in simulations of ionic liquids. https://doi.org/10.11588/HEIBOOKS.308.C3727
    15. Landsgesell, J., Holm, C., & Smiatek, J. (2017). Wang–Landau Reaction Ensemble Method: Simulation of Weak Polyelectrolytes and General Acid–Base Reactions. Journal of Chemical Theory and Computation, 13(2), Article 2. https://doi.org/10.1021/acs.jctc.6b00791
    16. Michalowsky, J., Schäfer, L. V., Holm, C., & Smiatek, J. (2017). A refined polarizable water model for the coarse-grained MARTINI force field with long-range electrostatic interactions. The Journal of Chemical Physics, 146(5), Article 5. https://doi.org/10.1063/1.4974833
    17. Chung, S., Samin, S., Holm, C., Malherbe, J. G., & Amokrane, S. (2017). Dynamics of field-driven population inversion in a confined colloidal mixture. Phys. Rev. E, 95(2), Article 2. https://doi.org/10.1103/PhysRevE.95.022605
    18. Datar, A. V., Fyta, M., Marconi, U. M. B., & Melchionna, S. (2017). Electrokinetic Lattice Boltzmann Solver Coupled to Molecular Dynamics: Application to Polymer Translocation. Langmuir, 33(42), Article 42. https://doi.org/10.1021/acs.langmuir.7b01997
    19. Kobayashi, T., Reid, J. E. S. J., Shimizu, S., Fyta, M., & Smiatek, J. (2017). The properties of residual water molecules in ionic liquids: a comparison between direct and inverse Kirkwood–Buff approaches. Phys. Chem. Chem. Phys., 19(29), Article 29. https://doi.org/10.1039/C7CP03717A
    20. Roy, T., Szuttor, K., Smiatek, J., Holm, C., & Hardt, S. (2017). Stretching of surface-tethered polymers in pressure-driven flow under confinement. Soft Matter, 13(36), Article 36. https://doi.org/10.1039/C7SM00306D
    21. Richter, T., Landsgesell, J., Kosovan, P., & Holm, C. (2017). On the efficiency of a hydrogel-based desalination cycle. Desalination, 414, 28--34. https://doi.org/10.1016/j.desal.2017.03.027
    22. Landsgesell, J., Holm, C., & Smiatek, J. (2017). Simulation of weak polyelectrolytes: a comparison between the constant pH and the reaction ensemble method. The European Physical Journal Special Topics, 226(4), Article 4. https://doi.org/10.1140/epjst/e2016-60324-3
    23. Rud, O., Richter, T., Borisov, O., Holm, C., & Košovan, P. (2017). A self-consistent mean-field model for polyelectrolyte gels. Soft Matter, 13(18), Article 18. https://doi.org/10.1039/C6SM02825J
    24. Brown, A. T., Poon, W. C. K., Holm, C., & de Graaf, J. (2017). Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents. Soft Matter, 13(6), Article 6. https://doi.org/10.1039/C6SM01867J
  9. 2016

    1. Bauer, G., Gribova, N., Lange, A., Holm, C., & Gross, J. (2016). Three-body effects in triplets of capped gold nanocrystals. Molecular Physics, 115(9–12), Article 9–12. https://doi.org/10.1080/00268976.2016.1213909
    2. Burt, R., Breitsprecher, K., Daffos, B., Taberna, P.-L., Simon, P., Birkett, G., Zhao, X. S., Holm, C., & Salanne, M. (2016). Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions. The Journal of Physical Chemistry Letters, 7(19), Article 19. https://doi.org/10.1021/acs.jpclett.6b01787
    3. Sivaraman, G., Amorim, R. G., Scheicher, R. H., & Fyta, M. (2016). Benchmark investigation of diamondoid-functionalized electrodes for nanopore DNA sequencing. Nanotechnology, 27(41), Article 41. https://doi.org/10.1088/0957-4484/27/41/414002
    4. Hilfer, R. (2016). Mathematical analysis of time flow. Analysis, 36(1), Article 1. https://doi.org/doi:10.1515/anly-2015-5005
    5. de Graaf, J., Menke, H., Mathijssen, A. J. T. M., Fabritius, M., Holm, C., & Shendruk, T. N. (2016). Lattice-Boltzmann hydrodynamics of anisotropic active matter. The Journal of Chemical Physics, 144(13), Article 13. https://doi.org/10.1063/1.4944962
    6. Krishnamoorthy, A. N., Zeman, J., Holm, C., & Smiatek, J. (2016). Preferential solvation and ion association properties in aqueous dimethyl sulfoxide solutions. Phys. Chem. Chem. Phys., 18(45), Article 45. https://doi.org/10.1039/C6CP05909K
    7. Weik, F., Kesselheim, S., & Holm, C. (2016). A coarse-grained DNA model for the prediction of current signals in DNA translocation experiments. The Journal of Chemical Physics, 145(19), Article 19. https://doi.org/10.1063/1.4967458
    8. Smiatek, J., Hansen, N., & Kästner, J. (2016). Chapter 6. Free Energy Calculation Methods and Rare Event Sampling Techniques for Biomolecular Simulations. In Theoretical and Computational Chemistry Series (pp. 185--214). Royal Society of Chemistry. https://doi.org/10.1039/9781782626831-00185
    9. Lesch, V., Heuer, A., Rad, B. R., Winter, M., & Smiatek, J. (2016). Atomistic insights into deep eutectic electrolytes: the influence of urea on the electrolyte salt LiTFSI in view of electrochemical applications. Phys. Chem. Chem. Phys., 18(41), Article 41. https://doi.org/10.1039/C6CP04217A
    10. Bordin, J. R., Podgornik, R., & Holm, C. (2016). Static polarizability effects on counterion distributions near charged dielectric surfaces: A coarse-grained Molecular Dynamics study employing the Drude model. The European Physical Journal Special Topics, 225(8), Article 8. https://doi.org/10.1140/epjst/e2016-60150-1
    11. Sivaraman, G., Amorim, R. G., Scheicher, R. H., & Fyta, M. (2016). Diamondoid-functionalized gold nanogaps as sensors for natural, mutated, and epigenetically modified DNA nucleotides. Nanoscale, 8(19), Article 19. https://doi.org/10.1039/C6NR00500D
    12. Adhikari, B., Meng, S., & Fyta, M. (2016). Carbene-mediated self-assembly of diamondoids on metal surfaces. Nanoscale, 8(16), Article 16. https://doi.org/10.1039/C5NR08709K
    13. Kuron, M., Rempfer, G., Schornbaum, F., Bauer, M., Godenschwager, C., Holm, C., & de Graaf, J. (2016). Moving charged particles in lattice Boltzmann-based electrokinetics. The Journal of Chemical Physics, 145(21), Article 21. https://doi.org/10.1063/1.4968596
    14. Rempfer, G., Davies, G. B., Holm, C., & de Graaf, J. (2016). Reducing spurious flow in simulations of electrokinetic phenomena. The Journal of Chemical Physics, 145(4), Article 4. https://doi.org/10.1063/1.4958950
    15. Ilse, S. E., Holm, C., & de Graaf, J. (2016). Surface roughness stabilizes the clustering of self-propelled triangles. The Journal of Chemical Physics, 145(13), Article 13. https://doi.org/10.1063/1.4963804
    16. Hahn, M. B., Uhlig, F., Solomun, T., Smiatek, J., & Sturm, H. (2016). Combined influence of ectoine and salt: spectroscopic and numerical evidence for compensating effects on aqueous solutions. Phys. Chem. Chem. Phys., 18(41), Article 41. https://doi.org/10.1039/C6CP05417J
    17. Sivaraman, G., de Souza, F. A. L., Amorim, R. G., Scopel, W. L., Fyta, M., & Scheicher, R. H. (2016). Electronic Transport along Hybrid MoS$łess$sub$\greater$2$łess$/sub$\greater$ Monolayers. The Journal of Physical Chemistry C, 120(41), Article 41. https://doi.org/10.1021/acs.jpcc.6b07917
    18. Sánchez, P. A., Smiatek, J., Qiao, B., Sega, M., & Holm, C. (2016). Atomistic Simulation of Oligoelectrolyte Multilayers Growth. High Performance Computing in Science and Engineering ’15, 215--228.
    19. Huang, S., Pessot, G., Cremer, P., Weeber, R., Holm, C., Nowak, J., Odenbach, S., Menzel, A. M., & Auernhammer, G. K. (2016). Buckling of paramagnetic chains in soft gels. Soft Matter, 12(1), Article 1. https://doi.org/10.1039/C5SM01814E
    20. de Graaf, J., Mathijssen, A. J. T. M., Fabritius, M., Menke, H., Holm, C., & Shendruk, T. N. (2016). Understanding the onset of oscillatory swimming in microchannels. Soft Matter, 12(21), Article 21. https://doi.org/10.1039/C6SM00939E
    21. Lahnert, M., Burstedde, C., Holm, C., Mehl, M., Rempfer, G., & Weik, F. (2016). TOWARDS LATTICE-BOLTZMANN ON DYNAMICALLY ADAPTIVE GRIDS — MINIMALLY-INVASIVE GRID EXCHANGE IN ESPRESSO. Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016). https://doi.org/10.7712/100016.1982.4659
    22. Site, L. D., Deserno, M., Dünweg, B., Holm, C., Peter, C., & Pleiner, H. (2016). Editorial. The European Physical Journal Special Topics, 225(8), Article 8. https://doi.org/10.1140/epjst/e2016-60242-x
    23. Natterer, A., Adhikari, B., & Fyta, M. (2016). Complexes of carbene-functionalized diamondoids and metal atoms: Electronic properties. Journal of Organometallic Chemistry, 815–816, 8--15. https://doi.org/10.1016/j.jorganchem.2016.04.024
    24. León, S. C., Prentiss, M., & Fyta, M. (2016). Binding energies of nucleobase complexes: Relevance to homology recognition of DNA. Phys. Rev. E, 93(6), Article 6. https://doi.org/10.1103/PhysRevE.93.062410
    25. Rempfer, G., Ehrhardt, S., Laohakunakorn, N., Davies, G. B., Keyser, U. F., Holm, C., & de Graaf, J. (2016). Selective Trapping of DNA Using Glass Microcapillaries. Langmuir, 32(33), Article 33. https://doi.org/10.1021/acs.langmuir.6b02071
    26. Micciulla, S., Michalowsky, J., Schroer, M. A., Holm, C., von Klitzing, R., & Smiatek, J. (2016). Concentration dependent effects of urea binding to poly(N-isopropylacrylamide) brushes: a combined experimental and numerical study. Phys. Chem. Chem. Phys., 18(7), Article 7. https://doi.org/10.1039/C5CP07544K
    27. Schroer, M. A., Michalowsky, J., Fischer, B., Smiatek, J., & Grübel, G. (2016). Stabilizing effect of TMAO on globular PNIPAM states: preferential attraction induces preferential hydration. Phys. Chem. Chem. Phys., 18(46), Article 46. https://doi.org/10.1039/C6CP05991K
    28. Fyta, M. (2016). Computational Approaches in Physics. In 2053-2571. Morgan & Claypool Publishers. https://doi.org/10.1088/978-1-6817-4417-9
    29. Rempfer, G., Ehrhardt, S., Holm, C., & de Graaf, J. (2016). Nanoparticle Translocation through Conical Nanopores: A Finite Element Study of Electrokinetic Transport. Macromolecular Theory and Simulations, 26(1), Article 1. https://doi.org/10.1002/mats.201600051
    30. Breitsprecher, K., Anand, N. K., Smiatek, J., & Holm, C. (2016). Force Field Optimization for Ionic Liquids: FFOIL. High Performance Computing in Science and Engineering ’15, 101--117.
    31. Adhikari, B., Sivaraman, G., & Fyta, M. (2016). Diamondoid-based molecular junctions: a computational study. Nanotechnology, 27(48), Article 48. https://doi.org/10.1088/0957-4484/27/48/485207
    32. Kosovan, P., Richter, T., & Holm, C. (2016). Correction to Modeling of Polyelectrolyte Gels in Equilibrium with Salt Solutions. Macromolecules, 49(6), Article 6. https://doi.org/10.1021/acs.macromol.6b00395
  10. 2015

    1. Minina, E., & Arnold, A. (2015). Entropic Segregation of Ring Polymers in Cylindrical Confinement. Macromolecules, 48(14), Article 14. https://doi.org/10.1021/acs.macromol.5b00636
    2. Lesch, V., Heuer, A., Holm, C., & Smiatek, J. (2015). Properties of Apolar Solutes in Alkyl Imidazolium-Based Ionic Liquids: The Importance of Local Interactions. ChemPhysChem, 17(3), Article 3. https://doi.org/10.1002/cphc.201501021
    3. Holm, C., Gompper, G., & Dill, K. A. (2015). Preface: Special Topic on Coarse Graining of Macromolecules, Biopolymers, and Membranes. The Journal of Chemical Physics, 143(24), Article 24. https://doi.org/10.1063/1.4938430
    4. Kuron, M., & Arnold, A. (2015). Role of geometrical shape in like-charge attraction of DNA. The European Physical Journal E, 38(3), Article 3. https://doi.org/10.1140/epje/i2015-15020-9
    5. de Graaf, J., Peter, T., Fischer, L. P., & Holm, C. (2015). The Raspberry model for hydrodynamic interactions revisited. II. The effect of confinement. The Journal of Chemical Physics, 143(8), Article 8. https://doi.org/10.1063/1.4928503
    6. Lesch, V., Heuer, A., Tatsis, V. A., Holm, C., & Smiatek, J. (2015). Peptides in the presence of aqueous ionic liquids: tunable co-solutes as denaturants or protectants? Phys. Chem. Chem. Phys., 17(39), Article 39. https://doi.org/10.1039/C5CP03838C
    7. Hilfer, R., Armstrong, R. T., Berg, S., Georgiadis, A., & Ott, H. (2015). Capillary saturation and desaturation. Phys. Rev. E, 92(6), Article 6. https://doi.org/10.1103/PhysRevE.92.063023
    8. Hilfer, R., & Lemmer, A. (2015). Differential porosimetry and permeametry for random porous media. Phys. Rev. E, 92(1), Article 1. https://doi.org/10.1103/PhysRevE.92.013305
    9. Hilfer, R. (2015). Time Automorphisms on C*-Algebras. Mathematics, 3(3), Article 3. https://doi.org/10.3390/math3030626
    10. Kratzer, K., & Arnold, A. (2015). Two-stage crystallization of charged colloids under low supersaturation conditions. Soft Matter, 11(11), Article 11. https://doi.org/10.1039/C4SM02365J
    11. Vögele, M., Holm, C., & Smiatek, J. (2015). Properties of the polarizable MARTINI water model: A comparative study for aqueous electrolyte solutions. Journal of Molecular Liquids, 212, 103--110. https://doi.org/10.1016/j.molliq.2015.08.062
    12. Vögele, M., Holm, C., & Smiatek, J. (2015). Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium). The Journal of Chemical Physics, 143(24), Article 24. https://doi.org/10.1063/1.4937805
    13. Taudt, A., Arnold, A., & Pleiss, J. (2015). Simulation of protein association: Kinetic pathways towards crystal contacts. Phys. Rev. E, 91(3), Article 3. https://doi.org/10.1103/PhysRevE.91.033311
    14. Kosovan, P., Richter, T., & Holm, C. (2015). Modeling of Polyelectrolyte Gels in Equilibrium with Salt Solutions. Macromolecules, 48(20), Article 20. https://doi.org/10.1021/acs.macromol.5b01428
    15. Weeber, R., Kantorovich, S., & Holm, C. (2015). Ferrogels cross-linked by magnetic nanoparticles—Deformation mechanisms in two and three dimensions studied by means of computer simulations. Journal of Magnetism and Magnetic Materials, 383, 262--266. https://doi.org/10.1016/j.jmmm.2015.01.018
    16. Breitsprecher, K., Szuttor, K., & Holm, C. (2015). Electrode Models for Ionic Liquid-Based Capacitors. The Journal of Physical Chemistry C, 119(39), Article 39. https://doi.org/10.1021/acs.jpcc.5b06046
    17. Lesch, V., Heuer, A., Holm, C., & Smiatek, J. (2015). Solvent effects of 1-ethyl-3-methylimidazolium acetate: solvation and dynamic behavior of polar and apolar solutes. Phys. Chem. Chem. Phys., 17(13), Article 13. https://doi.org/10.1039/C4CP05312E
    18. Hahn, M. B., Solomun, T., Wellhausen, R., Hermann, S., Seitz, H., Meyer, S., Kunte, H.-J., Zeman, J., Uhlig, F., Smiatek, J., & Sturm, H. (2015). Influence of the Compatible Solute Ectoine on the Local Water Structure: Implications for the Binding of the Protein G5P to DNA. The Journal of Physical Chemistry B, 119(49), Article 49. https://doi.org/10.1021/acs.jpcb.5b09506
    19. Wohlfarth, A., Smiatek, J., Kreuer, K.-D., Takamuku, S., Jannasch, P., & Maier, J. (2015). Proton Dissociation of Sulfonated Polysulfones: Influence of Molecular Structure and Conformation. Macromolecules, 48(4), Article 4. https://doi.org/10.1021/ma502550f
    20. Raafatnia, S., Hickey, O. A., & Holm, C. (2015). Electrophoresis of a Spherical Polyelectrolyte-Grafted Colloid in Monovalent Salt Solutions: Comparison of Molecular Dynamics Simulations with Theory and Numerical Calculations. Macromolecules, 48(3), Article 3. https://doi.org/10.1021/ma502238z
    21. de Graaf, J., Rempfer, G., & Holm, C. (2015). Diffusiophoretic Self-Propulsion for Partially Catalytic Spherical Colloids. IEEE Transactions on NanoBioscience, 14(3), Article 3. https://doi.org/10.1109/tnb.2015.2403255
    22. Pessot, G., Weeber, R., Holm, C., Löwen, H., & Menzel, A. M. (2015). Towards a scale-bridging description of ferrogels and magnetic elastomers. Journal of Physics: Condensed Matter, 27(32), Article 32. https://doi.org/10.1088/0953-8984/27/32/325105
    23. Fischer, L. P., Peter, T., Holm, C., & de Graaf, J. (2015). The raspberry model for hydrodynamic interactions revisited. I. Periodic arrays of spheres and dumbbells. The Journal of Chemical Physics, 143(8), Article 8. https://doi.org/10.1063/1.4928502
    24. Weeber, R., Kantorovich, S., & Holm, C. (2015). Ferrogels cross-linked by magnetic particles: Field-driven deformation and elasticity studied using computer simulations. The Journal of Chemical Physics, 143(15), Article 15. https://doi.org/10.1063/1.4932371
    25. Fahrenberger, F., Hickey, O. A., Smiatek, J., & Holm, C. (2015). The influence of charged-induced variations in the local permittivity on the static and dynamic properties of polyelectrolyte solutions. The Journal of Chemical Physics, 143(24), Article 24. https://doi.org/10.1063/1.4936666
  11. 2014

    1. Fyta, M. (2014). Stable boron nitride diamondoids as nanoscale materials. Nanotechnology, 25(36), Article 36. https://doi.org/10.1088/0957-4484/25/36/365601
    2. C. Maier, F., Sivaraman, G., & Fyta, M. (2014). The role of a diamondoid as a hydrogen donor or acceptor in probing DNA nucleobases. The European Physical Journal E, 37(10), Article 10. https://doi.org/10.1140/epje/i2014-14095-0
    3. Dommert, F., Wendler, K., Qiao, B., Site, L. D., & Holm, C. (2014). Generic force fields for ionic liquids. Journal of Molecular Liquids, 192, 32--37. https://doi.org/10.1016/j.molliq.2013.09.001
    4. Ertl, T., Krone, M., Kesselheim, S., Scharnowski, K., Reina, G., & Holm, C. (2014). Visual analysis for space–time aggregation of biomolecular simulations. Faraday Discuss., 169(0), Article 0. https://doi.org/10.1039/C3FD00156C
    5. Krishnamoorthy, A. N., Holm, C., & Smiatek, J. (2014). Local Water Dynamics around Antifreeze Protein Residues in the Presence of Osmolytes: The Importance of Hydroxyl and Disaccharide Groups. The Journal of Physical Chemistry B, 118(40), Article 40. https://doi.org/10.1021/jp507062r
    6. Micciulla, S., Sánchez, P. A., Smiatek, J., Qiao, B., Sega, M., Laschewsky, A., Holm, C., & von Klitzing, R. (2014). Layer-by-Layer Formation of Oligoelectrolyte Multilayers: A Combined Experimental and Computational Study. Soft Materials, 12(sup1), Article sup1. https://doi.org/10.1080/1539445x.2014.930046
    7. Bohner, M. U., Zeman, J., Smiatek, J., Arnold, A., & Kästner, J. (2014). Nudged-elastic band used to find reaction coordinates based on the free energy. The Journal of Chemical Physics, 140(7), Article 7. https://doi.org/10.1063/1.4865220
    8. Minina, E., & Arnold, A. (2014). Induction of entropic segregation: the first step is the hardest. Soft Matter, 10(31), Article 31. https://doi.org/10.1039/C4SM00286E
    9. Smiatek, J., & Heuer, A. (2014). Deprotonation mechanism of a single-stranded DNA i-motif. RSC Adv., 4(33), Article 33. https://doi.org/10.1039/C4RA01420K
    10. Breitsprecher, K., Kosovan, P., & Holm, C. (2014). Coarse-grained simulations of an ionic liquid-based capacitor: II. Asymmetry in ion shape and charge localization. Journal of Physics: Condensed Matter, 26(28), Article 28. https://doi.org/10.1088/0953-8984/26/28/284114
    11. Hickey, O. A., Holm, C., & Smiatek, J. (2014). Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: The importance of hydrodynamic interactions. The Journal of Chemical Physics, 140(16), Article 16. https://doi.org/10.1063/1.4872366
    12. Kratzer, K., Berryman, J. T., Taudt, A., Zeman, J., & Arnold, A. (2014). The Flexible Rare Event Sampling Harness System (FRESHS). Computer Physics Communications, 185(7), Article 7. https://doi.org/10.1016/j.cpc.2014.03.013
    13. Raafatnia, S., Hickey, O. A., & Holm, C. (2014). Mobility Reversal of Polyelectrolyte-Grafted Colloids in Monovalent Salt Solutions. Phys. Rev. Lett., 113(23), Article 23. https://doi.org/10.1103/PhysRevLett.113.238301
    14. Sivaraman, G., & Fyta, M. (2014). Chemically modified diamondoids as biosensors for DNA. Nanoscale, 6(8), Article 8. https://doi.org/10.1039/C3NR06417D
    15. Maier, F. C., & Fyta, M. (2014). Type-Dependent Identification of DNA Nucleobases by Using Diamondoids. ChemPhysChem, 15(16), Article 16. https://doi.org/10.1002/cphc.201402335
    16. Breitsprecher, K., Kosovan, P., & Holm, C. (2014). Coarse-grained simulations of an ionic liquid-based capacitor: I. Density, ion size, and valency effects. Journal of Physics: Condensed Matter, 26(28), Article 28. https://doi.org/10.1088/0953-8984/26/28/284108
    17. Fahrenberger, F., & Holm, C. (2014). Computing the Coulomb interaction in inhomogeneous dielectric media via a local electrostatics lattice algorithm. Phys. Rev. E, 90(6), Article 6. https://doi.org/10.1103/PhysRevE.90.063304
    18. Elshwishin, A., Köser, J., Schröer, W., & Qiao, B. (2014). Liquid–liquid phase separation of ionic liquids in solutions: Ionic liquids with the triflat anion solved in aryl halides. Journal of Molecular Liquids, 192, 127--136. https://doi.org/10.1016/j.molliq.2013.07.012
    19. Kesselheim, S., Müller, W., & Holm, C. (2014). Origin of Current Blockades in Nanopore Translocation Experiments. Phys. Rev. Lett., 112(1), Article 1. https://doi.org/10.1103/PhysRevLett.112.018101
    20. Raafatnia, S., Hickey, O. A., Sega, M., & Holm, C. (2014). Computing the Electrophoretic Mobility of Large Spherical Colloids by Combining Explicit Ion Simulations with the Standard Electrokinetic Model. Langmuir, 30(7), Article 7. https://doi.org/10.1021/la4039528
    21. Smiatek, J. (2014). Osmolyte Effects: Impact on the Aqueous Solution around Charged and Neutral Spheres. The Journal of Physical Chemistry B, 118(3), Article 3. https://doi.org/10.1021/jp410261k
    22. Vagias, A., Kosovan, P., Koynov, K., Holm, C., Butt, H.-J., & Fytas, G. (2014). Dynamics in Stimuli-Responsive Poly($łess$i$\greater$N$łess$/i$\greater$-isopropylacrylamide) Hydrogel Layers As Revealed by Fluorescence Correlation Spectroscopy. Macromolecules, 47(15), Article 15. https://doi.org/10.1021/ma500928p
    23. Hilfer, R., & Steinle, R. (2014). Saturation overshoot and hysteresis for twophase flow in porous media. The European Physical Journal Special Topics, 223(11), Article 11. https://doi.org/10.1140/epjst/e2014-02267-x
    24. Bauer, G., Lange, A., Gribova, N., Holm, C., & Gross, J. (2014). Effective potentials between gold nano crystals – functional dependence on temperature. Molecular Simulation, 41(14), Article 14. https://doi.org/10.1080/08927022.2014.951521
    25. Sivaraman, G., & Fyta, M. (2014). Diamondoids as DNA methylation and mutation probes. EPL (Europhysics Letters), 108(1), Article 1. https://doi.org/10.1209/0295-5075/108/17005
    26. Sega, M., Kantorovich, S. S., Holm, C., & Arnold, A. (2014). Communication: Kinetic and pairing contributions in the dielectric spectra of electrolyte solutions. The Journal of Chemical Physics, 140(21), Article 21. https://doi.org/10.1063/1.4880237
    27. Smiatek, J., Wohlfarth, A., & Holm, C. (2014). The solvation and ion condensation properties for sulfonated polyelectrolytes in different solvents—a computational study. New Journal of Physics, 16(2), Article 2. https://doi.org/10.1088/1367-2630/16/2/025001
    28. Smiatek, J., Janssen-Müller, D., Friedrich, R., & Heuer, A. (2014). Systematic detection of hidden complexities in the unfolding mechanism of a cytosine-rich DNA strand. Physica A: Statistical Mechanics and Its Applications, 394, 136--144. https://doi.org/10.1016/j.physa.2013.09.030
    29. Adhikari, B., & Fyta, M. (2014). Towards double-functionalized small diamondoids: selective electronic band-gap tuning. Nanotechnology, 26(3), Article 3. https://doi.org/10.1088/0957-4484/26/3/035701
  12. 2013

    1. Vagias, A., Raccis, R., Koynov, K., Jonas, U., Butt, H.-J., Fytas, G., Koss\fiovan, P., Lenz, O., & Holm, C. (2013). Complex Tracer Diffusion Dynamics in Polymer Solutions. Phys. Rev. Lett., 111(8), Article 8. https://doi.org/10.1103/PhysRevLett.111.088301
    2. Dommert, F., & Holm, C. (2013). Refining classical force fields for ionic liquids: theory and application to MMIMCl. Phys. Chem. Chem. Phys., 15(6), Article 6. https://doi.org/10.1039/C2CP43698A
    3. Hönig, O., Doster, F., & Hilfer, R. (2013). Traveling Wave Solutions in a Generalized Theory for Macroscopic Capillarity. Transport in Porous Media, 99(3), Article 3. https://doi.org/10.1007/s11242-013-0196-0
    4. Köddermann, T., Reith, D., & Arnold, A. (2013). Why the Partition Coefficient of Ionic Liquids Is Concentration-Dependent. The Journal of Physical Chemistry B, 117(37), Article 37. https://doi.org/10.1021/jp405383f
    5. Arnold, A., Lenz, O., Kesselheim, S., Weeber, R., Fahrenberger, F., Roehm, D., Košovan, P., & Holm, C. (2013). ESPResSo 3.1: Molecular Dynamics Software for Coarse-Grained Models. Meshfree Methods for Partial Differential Equations VI, 1--23.
    6. Chakrabarti, R., Kesselheim, S., Koss\fiovan, P., & Holm, C. (2013). Tracer diffusion in a crowded cylindrical channel. Phys. Rev. E, 87(6), Article 6. https://doi.org/10.1103/PhysRevE.87.062709
    7. Günther, F., Janoschek, F., Frijters, S., & Harting, J. (2013). Lattice Boltzmann simulations of anisotropic particles at liquid interfaces. Computers &amp$\mathsemicolon$ Fluids, 80, 184--189. https://doi.org/10.1016/j.compfluid.2012.03.020
    8. Hilfer, R. (2013). Applications and Implications of Fractional Dynamics for Dielectric Relaxation. Recent Advances in Broadband Dielectric Spectroscopy, 123--130.
    9. Höpfner, J., Richter, T., Košovan, P., Holm, C., & Wilhelm, M. (2013). Seawater Desalination via Hydrogels: Practical Realisation and First Coarse Grained Simulations. Intelligent Hydrogels, 247--263.
    10. Košovan, P., Richter, T., & Holm, C. (2013). Molecular Simulations of Hydrogels. Intelligent Hydrogels, 205--221.
    11. Novak, E., Minina, E., Pyanzina, E., Kantorovich, S., & Ivanov, A. (2013). Structure factor of model bidisperse ferrofluids with relatively weak interparticle interactions. The Journal of Chemical Physics, 139(22), Article 22. https://doi.org/10.1063/1.4834635
    12. Samin, S., Tsori, Y., & Holm, C. (2013). Vapor-liquid coexistence of the Stockmayer fluid in nonuniform external fields. Phys. Rev. E, 87(5), Article 5. https://doi.org/10.1103/PhysRevE.87.052128
    13. Minina, E., & Kantorovich, S. (2013). The influence of dimensionality on the behavior of magnetic dipolar soft spheres: calculation of the pressure. Journal of Physics: Condensed Matter, 25(15), Article 15. https://doi.org/10.1088/0953-8984/25/15/155102
    14. Smiatek, J., Heuer, A., Wagner, H., Studer, A., Hentschel, C., & Chi, L. (2013). Coat thickness dependent adsorption of hydrophobic molecules at polymer brushes. The Journal of Chemical Physics, 138(4), Article 4. https://doi.org/10.1063/1.4789305
    15. Dorozhko, Y., Kratzer, K., Yudin, Y., Arnold, A., Glass, C., & Resch, M. (2013). Rare Event Sampling using the Science Experimental Grid Laboratory. In Civil-Comp Proceedings (Vol. 102, p. Paper 207--). https://doi.org/10.4203/ccp.102.207
    16. Fyta, M. (2013). Nitrogen-Vacancy Centers and Dopants in Ultrathin Diamond Films: Electronic Structure. The Journal of Physical Chemistry C, 117(41), Article 41. https://doi.org/10.1021/jp407356u
    17. Sánchez, P. A., Cerdà, J. J., Sintes, T., & Holm, C. (2013). Effects of the dipolar interaction on the equilibrium morphologies of a single supramolecular magnetic filament in bulk. The Journal of Chemical Physics, 139(4), Article 4. https://doi.org/10.1063/1.4815915
    18. Sega, M., Kantorovich, S. S., Arnold, A., & Holm, C. (2013). On the Calculation of the Dielectric Properties of Liquid Ionic Systems. Recent Advances in Broadband Dielectric Spectroscopy, 103--122.
    19. Kratzer, K., Arnold, A., & Allen, R. J. (2013). Automatic, optimized interface placement in forward flux sampling simulations. The Journal of Chemical Physics, 138(16), Article 16. https://doi.org/10.1063/1.4801866
    20. Mamatkulov, S., Fyta, M., & Netz, R. R. (2013). Force fields for divalent cations based on single-ion and ion-pair properties. The Journal of Chemical Physics, 138(2), Article 2. https://doi.org/10.1063/1.4772808
    21. Smiatek, J., Harishchandra, R. K., Galla, H.-J., & Heuer, A. (2013). Low concentrated hydroxyectoine solutions in presence of DPPC lipid bilayers: A computer simulation study. Biophysical Chemistry, 180–181, 102--109. https://doi.org/10.1016/j.bpc.2013.07.001
    22. Vagias, A., Košovan, P., Holm, C., Butt, H.-J., Koynov, K., & Fytas, G. (2013). Tracer Mobility in Aqueous Poly(N-isopropylacrylamide) Grafted Networks: Effect of Interactions and Permanent Crosslinks. Intelligent Hydrogels, 53--62.
    23. Hecht, M., & Harting, J. (2013). Erratum: Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations. Journal of Statistical Mechanics: Theory and Experiment, 2013(02), Article 02. https://doi.org/10.1088/1742-5468/2013/02/e02001
    24. Klinkigt, M., Weeber, R., Kantorovich, S., & Holm, C. (2013). Cluster formation in systems of shifted-dipole particles. Soft Matter, 9(13), Article 13. https://doi.org/10.1039/C2SM27290C
    25. Krüger, T., Frijters, S., Günther, F., Kaoui, B., & Harting, J. (2013). Numerical simulations of complex fluid-fluid interface dynamics. The European Physical Journal Special Topics, 222(1), Article 1. https://doi.org/10.1140/epjst/e2013-01834-y
    26. Gekle, S., & Arnold, A. (2013). Comment on ``Anomalous Dielectric Behavior of Nanoconfined Electrolytic Solutions’’. Phys. Rev. Lett., 111(8), Article 8. https://doi.org/10.1103/PhysRevLett.111.089801
    27. Weeber, R., Klinkigt, M., Kantorovich, S., & Holm, C. (2013). Microstructure and magnetic properties of magnetic fluids consisting of shifted dipole particles under the influence of an external magnetic field. The Journal of Chemical Physics, 139(21), Article 21. https://doi.org/10.1063/1.4832239
    28. Adhikari, B., Muthuraman, B., Mathioudakis, C., & Fyta, M. (2013). Promoting the assembly of carbon onions: An atomistic approach. Physica Status Solidi (a), 211(2), Article 2. https://doi.org/10.1002/pssa.201330082
    29. Semenov, I., Raafatnia, S., Sega, M., Lobaskin, V., Holm, C., & Kremer, F. (2013). Electrophoretic mobility and charge inversion of a colloidal particle studied by single-colloid electrophoresis and molecular dynamics simulations. Phys. Rev. E, 87(2), Article 2. https://doi.org/10.1103/PhysRevE.87.022302
    30. Hickey, O. A., & Holm, C. (2013). Electrophoretic mobility reversal of polyampholytes induced by strong electric fields or confinement. The Journal of Chemical Physics, 138(19), Article 19. https://doi.org/10.1063/1.4804620
    31. Roehm, D., Kratzer, K., & Arnold, A. (2013). Heterogeneous and Homogeneous Crystallization of Soft Spheres in Suspension. High Performance Computing in Science and Engineering ‘13, 33--52.
    32. Arnold, A., Fahrenberger, F., Holm, C., Lenz, O., Bolten, M., Dachsel, H., Halver, R., Kabadshow, I., Gähler, F., Heber, F., Iseringhausen, J., Hofmann, M., Pippig, M., Potts, D., & Sutmann, G. (2013). Comparison of scalable fast methods for long-range interactions. Phys. Rev. E, 88(6), Article 6. https://doi.org/10.1103/PhysRevE.88.063308
    33. Arnold, A., Breitsprecher, K., Fahrenberger, F., Kesselheim, S., Lenz, O., & Holm, C. (2013). Efficient Algorithms for Electrostatic Interactions Including Dielectric Contrasts. Entropy, 15(11), Article 11. https://doi.org/10.3390/e15114569
  13. 2012

    1. Bachthaler, S., Sadlo, F., Weeber, R., Kantorovich, S., Holm, C., & Weiskopf, D. (2012). Magnetic Flux Topology of 2D Point Dipoles. Computer Graphics Forum, 31(3pt1), Article 3pt1. https://doi.org/10.1111/j.1467-8659.2012.03088.x
    2. Brandes, T., Arnold, A., Soddemann, T., & Reith, D. (2012). CPU vs. GPU - Performance comparison for the Gram-Schmidt algorithm. The European Physical Journal Special Topics, 210(1), Article 1. https://doi.org/10.1140/epjst/e2012-01638-7
    3. Chakrabarti, R. (2012). Dynamics of end-to-end loop formation: A flexible chain in the presence of hydrodynamic interaction. Physica A: Statistical Mechanics and Its Applications, 391(16), Article 16. https://doi.org/10.1016/j.physa.2012.03.025
    4. Fyta, M. (2012). Structural and technical details of the Kirkwood-Buff integrals from the optimization of ionic force fields: focus on fluorides. The European Physical Journal E, 35(3), Article 3. https://doi.org/10.1140/epje/i2012-12021-2
    5. Doster, F., Hönig, O., & Hilfer, R. (2012). Horizontal flow and capillarity-driven redistribution in porous media. Phys. Rev. E, 86(1), Article 1. https://doi.org/10.1103/PhysRevE.86.016317
    6. Fyta, M., & Netz, R. R. (2012). Ionic force field optimization based on single-ion and ion-pair solvation properties: Going beyond standard mixing rules. The Journal of Chemical Physics, 136(12), Article 12. https://doi.org/10.1063/1.3693330
    7. Roehm, D., & Arnold, A. (2012). Lattice Boltzmann simulations on GPUs with ESPResSo. The European Physical Journal Special Topics, 210(1), Article 1. https://doi.org/10.1140/epjst/e2012-01639-6
    8. Doster, F., & Hilfer, R. (2012). Corrigendum: Generalized Buckley–Leverett theory for two-phase flow in porous media. New Journal of Physics, 14(2), Article 2. https://doi.org/10.1088/1367-2630/14/2/029501
    9. Hsu, C. W., Fyta, M., Lakatos, G., Melchionna, S., & Kaxiras, E. (2012). $łess$i$\greater$Ab initio$łess$/i$\greater$ determination of coarse-grained interactions in double-stranded DNA. The Journal of Chemical Physics, 137(10), Article 10. https://doi.org/10.1063/1.4748105
    10. Dommert, F. (2012). From the inhomogeneous electron gas to classical force fields: a multi-scale model for Ionic Liquids. University Stuttgart.
    11. Ballenegger, V., Cerdà, J. J., & Holm, C. (2012). How to Convert SPME to P3M: Influence Functions and Error Estimates. Journal of Chemical Theory and Computation, 8(3), Article 3. https://doi.org/10.1021/ct2001792
    12. Dommert, F., Wendler, K., Berger, R., Site, L. D., & Holm, C. (2012). Force Fields for Studying the Structure and Dynamics of Ionic Liquids: A Critical Review of Recent Developments. ChemPhysChem, 13(7), Article 7. https://doi.org/10.1002/cphc.201100997
    13. Cerdà, J. J., Holm, C., & Qiao, B. (2012). Modeling the Structure and Dynamics of Polyelectrolyte Multilayers. In A. Ciferri & A. Perico (Eds.), Ionic Interactions in Natural and Synthetic Macromolecules (1st ed., pp. 121--166). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118165850.ch5
    14. Site, L. D., Holm, C., & van der Vegt, N. F. A. (2012). Multiscale Approaches and Perspectives to Modeling Aqueous Electrolytes and Polyelectrolytes. In B. Kirchner & J. Vrabec (Eds.), Multiscale Molecular Methods in Applied Chemistry (pp. 251--294). Springer Berlin Heidelberg. https://doi.org/10.1007/128_2011_168
    15. Weeber, R., Kantorovich, S., & Holm, C. (2012). Deformation mechanisms in 2D magnetic gels studied by computer simulations. Soft Matter, 8(38), Article 38. https://doi.org/10.1039/C2SM26097B
    16. Wendler, K., Dommert, F., Zhao, Y. Y., Berger, R., Holm, C., & Delle Site, L. (2012). Ionic liquids studied across different scales: A computational perspective. Faraday Discuss., 154(0), Article 0. https://doi.org/10.1039/C1FD00051A
    17. Dörfler, F., Rauscher, M., Koplik, J., Harting, J., & Dietrich, S. (2012). Micro- and nanoscale fluid flow on chemical channels. Soft Matter, 8(35), Article 35. https://doi.org/10.1039/C2SM25747E
    18. Hilfer, R., Doster, F., & Zegeling, P. A. (2012). Nonmonotone Saturation Profiles for Hydrostatic Equilibrium in Homogeneous Porous Media. Vadose Zone Journal, 11(3), Article 3. https://doi.org/10.2136/vzj2012.0021
  14. 2011

    1. Ballenegger, V., Cerdà, J. J., & Holm, C. (2011). Removal of spurious self-interactions in particle–mesh methods. Computer Physics Communications, 182(9), Article 9. https://doi.org/10.1016/j.cpc.2011.01.026
    2. Kaoui, B., Harting, J., & Misbah, C. (2011). Two-dimensional vesicle dynamics under shear flow: Effect of confinement. Phys. Rev. E, 83(6), Article 6. https://doi.org/10.1103/PhysRevE.83.066319
    3. Kantorovich, S., Weeber, R., Cerdà, J. J., & Holm, C. (2011). Magnetic particles with shifted dipoles. Journal of Magnetism and Magnetic Materials, 323(10), Article 10. https://doi.org/10.1016/j.jmmm.2010.11.019
    4. Cerdà, J. J., Holm, C., & Kremer, K. (2011). Novel Simulation Approaches for Polymeric and Soft Matter Systems. Macromolecular Theory and Simulations, 20(7), Article 7. https://doi.org/10.1002/mats.201100072
    5. Klinkigt, M., Weeber, R., Kantorovich, S., & Holm, C. (2011). System of particles with shifted magnetic dipoles. Magnetohydrodynamics, 47(2), Article 2. http://mhd.sal.lv/contents/2011/2/MG.47.2.5.R.html
    6. Schmieschek, S., & Harting, J. (2011). Contact Angle Determination in Multicomponent Lattice Boltzmann Simulations. Communications in Computational Physics, 9(5), Article 5. https://doi.org/DOI: 10.4208/cicp.201009.271010s
    7. Cerdà, J. J., Elfimova, E., Ballenegger, V., Krutikova, E., Ivanov, A., & Holm, C. (2011). Study of the structure factor anisotropy and long range correlations of ferrofluids in the dilute low-coupling regime. Journal of Magnetism and Magnetic Materials, 323(10), Article 10. https://doi.org/10.1016/j.jmmm.2010.11.015
    8. Gribova, N., Arnold, A., Schilling, T., & Holm, C. (2011). How close to two dimensions does a Lennard-Jones system need to be to produce a hexatic phase? The Journal of Chemical Physics, 135(5), Article 5. https://doi.org/10.1063/1.3623783
    9. Gutsche, C., Elmahdy, M. M., Kegler, K., Semenov, I., Stangner, T., Otto, O., Ueberschär, O., Keyser, U. F., Krueger, M., Rauscher, M., Weeber, R., Harting, J., Kim, Y. W., Lobaskin, V., Netz, R. R., & Kremer, F. (2011). Micro-rheology on (polymer-grafted) colloids using optical tweezers. Journal of Physics: Condensed Matter, 23(18), Article 18. https://doi.org/10.1088/0953-8984/23/18/184114
    10. Janoschek, F., Mancini, F., Harting, J., & Toschi, F. (2011). Rotational behaviour of red blood cells in suspension: a mesoscale simulation study. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1944), Article 1944. https://doi.org/10.1098/rsta.2011.0086
    11. Sánchez, P. A., Cerdà, J. J., Ballenegger, V., Sintes, T., Piro, O., & Holm, C. (2011). Semiflexible magnetic filaments near attractive flat surfaces: a Langevin dynamics study. Soft Matter, 7(5), Article 5. https://doi.org/10.1039/C0SM00772B
    12. Pyanzina, E., Kantorovich, S., Cerdà, J. J., & Holm, C. (2011). Structure factor of ferrofluids with chain aggregates: Theory and computer simulations. Journal of Magnetism and Magnetic Materials, 323(10), Article 10. https://doi.org/10.1016/j.jmmm.2010.11.018
    13. Mann, B. A. F., Kremer, K., Lenz, O., & Holm, C. (2011). Hydrogels in Poor Solvents: A Molecular Dynamics Study. Macromolecular Theory and Simulations, 20(8), Article 8. https://doi.org/10.1002/mats.201100050
    14. Tabatabaei, F., Lenz, O., & Holm, C. (2011). Simulational study of anomalous tracer diffusion in hydrogels. Colloid and Polymer Science, 289(5), Article 5. https://doi.org/10.1007/s00396-011-2393-0
    15. Hickey, O. A., Holm, C., Harden, J. L., & Slater, G. W. (2011). Influence of Charged Polymer Coatings on Electro-Osmotic Flow: Molecular Dynamics Simulations. Macromolecules, 44(23), Article 23. https://doi.org/10.1021/ma201995q
    16. Janoschek, F., Toschi, F., & Harting, J. (2011). Simulations of Blood Flow in Plain Cylindrical and Constricted Vessels with Single Cell Resolution. Macromolecular Theory and Simulations, 20(7), Article 7. https://doi.org/10.1002/mats.201100013
    17. Cerdà, J. J., Ballenegger, V., & Holm, C. (2011). Particle-particle particle-mesh method for dipolar interactions: On error estimates and efficiency of schemes with analytical differentiation and mesh interlacing. The Journal of Chemical Physics, 135(18), Article 18. https://doi.org/10.1063/1.3657407
    18. Dietermann, F. (2011). Behandlung stark nichtkollinearer Magnetisierungsstrukturen mit der Spin-Cluster Entwicklung. Uni Stuttgart, MPI fuer Intelligente Systeme.
    19. Qiao, B., Cerdà, J. J., & Holm, C. (2011). Atomistic Study of Surface Effects on Polyelectrolyte Adsorption: Case Study of a Poly(styrenesulfonate) Monolayer. Macromolecules, 44(6), Article 6. https://doi.org/10.1021/ma1026109
    20. Kunert, C., & Harting, J. (2011). Lattice Boltzmann simulations of liquid film drainage between smooth surfaces. IMA Journal of Applied Mathematics, 76(5), Article 5. https://doi.org/10.1093/imamat/hxr001
    21. Wendler, K., Zahn, S., Dommert, F., Berger, R., Holm, C., Kirchner, B., & Site, L. D. (2011). Locality and Fluctuations: Trends in Imidazolium-Based Ionic Liquids and Beyond. Journal of Chemical Theory and Computation, 7(10), Article 10. https://doi.org/10.1021/ct200375v
    22. Prokopyeva, T., Danilov, V., Dobroserdova, A., Kantorovich, S., & Holm, C. (2011). Ground state structures in ferrofluid monolayers. Journal of Magnetism and Magnetic Materials, 323(10), Article 10. https://doi.org/10.1016/j.jmmm.2010.11.034
    23. Kalteh, M., Abbassi, A., Saffar-Avval, M., & Harting, J. (2011). Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. International Journal of Heat and Fluid Flow, 32(1), Article 1. https://doi.org/10.1016/j.ijheatfluidflow.2010.08.001
    24. Hyväluoma, J., Kunert, C., & Harting, J. (2011). Simulations of slip flow on nanobubble-laden surfaces. Journal of Physics: Condensed Matter, 23(18), Article 18. https://doi.org/10.1088/0953-8984/23/18/184106
    25. Kesselheim, S., Sega, M., & Holm, C. (2011). Applying to DNA translocation: Effect of dielectric boundaries. Computer Physics Communications, 182(1), Article 1. https://doi.org/10.1016/j.cpc.2010.08.014
    26. Qiao, B., Sega, M., & Holm, C. (2011). An atomistic study of a poly(styrene sulfonate)/poly(diallyldimethylammonium) bilayer: the role of surface properties and charge reversal. Phys. Chem. Chem. Phys., 13(36), Article 36. https://doi.org/10.1039/C1CP21777A
    27. Kantorovich, S., Weeber, R., Cerda, J. J., & Holm, C. (2011). Ferrofluids with shifted dipoles: ground state structures. Soft Matter, 7(11), Article 11. https://doi.org/10.1039/C1SM05186E
    28. Doster, F. (2011). Die Bedeutung perkolirender und nichtperkolierender Phasen bei Mehrphasenströmungen in porösen Medien auf Laborskala. Universität Stuttgart.
  15. 2010

    1. Kunert, C. (2010). Lattice Boltzmann simulations of fluid flow in the vicinity of rough and hydrophobic boundaries. University of Stuttgart.
    2. Tyagi, S., Süzen, M., Sega, M., Barbosa, M., Kantorovich, S. S., & Holm, C. (2010). An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries. The Journal of Chemical Physics, 132(15), Article 15. https://doi.org/10.1063/1.3376011
    3. Dommert, F., Schmidt, J., Krekeler, C., Zhao, Y. Y., Berger, R., Site, L. D., & Holm, C. (2010). Towards multiscale modeling of ionic liquids: From electronic structure to bulk properties. Journal of Molecular Liquids, 152(1–3), Article 1–3. https://doi.org/10.1016/j.molliq.2009.06.014
    4. Nárvaez, A., & Harting, J. (2010). Evaluation of Pressure Boundary Conditions for Permeability Calculations Using the Lattice-Boltzmann Method. Advances in Applied Mathematics and Mechanics, 2(5), Article 5. https://doi.org/10.4208/aamm.10-10s11
    5. Hecht, M., & Harting, J. (2010). Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations. Journal of Statistical Mechanics: Theory and Experiment, 2010(01), Article 01. https://doi.org/10.1088/1742-5468/2010/01/P01018
    6. Krekeler, C., Dommert, F., Schmidt, J., Zhao, Y. Y., Holm, C., Berger, R., & Delle Site, L. (2010). Electrostatic properties of liquid 1,3-dimethylimidazolium chloride: role of local polarization and effect of the bulk. Phys. Chem. Chem. Phys., 12(8), Article 8. https://doi.org/10.1039/B917803C
    7. Harting, J., Kunert, C., & Hyväluoma, J. (2010). Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchannels. Microfluidics and Nanofluidics, 8(1), Article 1. https://doi.org/10.1007/s10404-009-0506-6
    8. Narváez, A., Zauner, T., Raischel, F., Hilfer, R., & Harting, J. (2010). Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations. Journal of Statistical Mechanics: Theory and Experiment, 2010(11), Article 11. https://doi.org/10.1088/1742-5468/2010/11/p11026
    9. Ojeda-May, P., & Garcia, M. E. (2010). Electric Field-Driven Disruption of a Native $\upbeta$-Sheet Protein Conformation and Generation of a Helix-Structure. Biophysical Journal, 99(2), Article 2. https://doi.org/10.1016/j.bpj.2010.04.040
    10. Hickey, O. A., Holm, C., Harden, J. L., & Slater, G. W. (2010). Implicit Method for Simulating Electrohydrodynamics of Polyelectrolytes. Phys. Rev. Lett., 105(14), Article 14. https://doi.org/10.1103/PhysRevLett.105.148301
    11. Neelov, A., & Holm, C. (2010). Interlaced P3M algorithm with analytical and ik-differentiation. The Journal of Chemical Physics, 132(23), Article 23. https://doi.org/10.1063/1.3430521
    12. Schäfer, B., Hecht, M., Harting, J., & Nirschl, H. (2010). Agglomeration and filtration of colloidal suspensions with DVLO interactions in simulation and experiment. Journal of Colloid and Interface Science, 349(1), Article 1. https://doi.org/10.1016/j.jcis.2010.05.025
    13. Kunert, C., Harting, J., & Vinogradova, O. I. (2010). Random-Roughness Hydrodynamic Boundary Conditions. Phys. Rev. Lett., 105(1), Article 1. https://doi.org/10.1103/PhysRevLett.105.016001
    14. Hecht, M., & Harting, J. (2010). Using Computational Steering to Explore the Parameter Space of Stability in a Suspension. High Performance Computing in Science and Engineering ’09, 33--48.
    15. Sayar, M., & Holm, C. (2010). Equilibrium polyelectrolyte bundles with different multivalent counterion concentrations. Phys. Rev. E, 82(3), Article 3. https://doi.org/10.1103/PhysRevE.82.031901
    16. Grass, K., & Holm, C. (2010). Mesoscale modelling of polyelectrolyte electrophoresis. Faraday Discuss., 144(0), Article 0. https://doi.org/10.1039/B902011J
    17. Horsch, M., Heitzig, M., Dan, C., Harting, J., Hasse, H., & Vrabec, J. (2010). Contact Angle Dependence on the Fluid-Wall Dispersive Energy. Langmuir, 26(13), Article 13. https://doi.org/10.1021/la1008363
    18. Schmidt, J., Krekeler, C., Dommert, F., Zhao, Y., Berger, R., Site, L. D., & Holm, C. (2010). Ionic Charge Reduction and Atomic Partial Charges from First-Principles Calculations of 1,3-Dimethylimidazolium Chloride. The Journal of Physical Chemistry B, 114(18), Article 18. https://doi.org/10.1021/jp910771q
    19. Wang, H., Dommert, F., & Holm, C. (2010). Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency. The Journal of Chemical Physics, 133(3), Article 3. https://doi.org/10.1063/1.3446812
    20. Janoschek, F., Toschi, F., & Harting, J. (2010). Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E, 82(5), Article 5. https://doi.org/10.1103/PhysRevE.82.056710
    21. Cerdà, J. J., Elfimova, E., Ballenegger, V., Krutikova, E., Ivanov, A., & Holm, C. (2010). Behavior of bulky ferrofluids in the diluted low-coupling regime: Theory and simulation. Phys. Rev. E, 81(1), Article 1. https://doi.org/10.1103/PhysRevE.81.011501
    22. Qiao, B., Cerdà, J. J., & Holm, C. (2010). Poly(styrenesulfonate)-Poly(diallyldimethylammonium) Mixtures: Toward the Understanding of Polyelectrolyte Complexes and Multilayers via Atomistic Simulations. Macromolecules, 43(18), Article 18. https://doi.org/10.1021/ma101091k
  16. 2009

    1. Ahmed, N. K., & Hecht, M. (2009). A Lattice Boltzmann Study of Flow Along Patterned Surfaces and Through Channels with Alternating Slip Length. 2009 Fifth International Conference on MEMS NANO, and Smart Systems, 109–113. https://doi.org/10.1109/ICMENS.2009.31
    2. Hecht, M., & Harting, J. (2009). Using computational steering to explore the parameter space of stability in a suspension. In W. Nagel & D. K. and M. Resch (Eds.), High Performance Computing in Science and Engineering ’09. Springer.
    3. Prokopieva, T. A., Danilov, V. A., Kantorovich, S. S., & Holm, C. (2009). Ground state structures in ferrofluid monolayers. Phys. Rev. E, 80(3), Article 3. https://doi.org/10.1103/PhysRevE.80.031404
    4. Cerdà, J. J., Qiao, B., & Holm, C. (2009). Modeling strategies for polyelectrolyte multilayers. The European Physical Journal Special Topics, 177(1), Article 1. https://doi.org/10.1140/epjst/e2009-01171-x
    5. Peña, A. A., McNamara, S., Lind, P. G., & Herrmann, H. J. (2009). Avalanches in anisotropic sheared granular media. Granular Matter, 11(4), Article 4. https://doi.org/10.1007/s10035-009-0136-4
    6. Seybold, H., & Hilfer, R. (2009). Numerical Algorithm for Calculating the Generalized Mittag-Leffler Function. SIAM Journal on Numerical Analysis, 47(1), Article 1. https://doi.org/10.1137/070700280
    7. Hecht, M., & Harting, J. (2009). Computational steering of cluster formation in Brownian suspensions. Computers &amp$\mathsemicolon$ Mathematics with Applications, 58(5), Article 5. https://doi.org/10.1016/j.camwa.2009.02.018
    8. Smiatek, J., Sega, M., Holm, C., Schiller, U. D., & Schmid, F. (2009). Mesoscopic simulations of the counterion-induced electro-osmotic flow: A comparative study. The Journal of Chemical Physics, 130(24), Article 24. https://doi.org/10.1063/1.3152844
    9. Claudio, G. C., Kremer, K., & Holm, C. (2009). Comparison of a hydrogel model to the Poisson–Boltzmann cell model. The Journal of Chemical Physics, 131(9), Article 9. https://doi.org/10.1063/1.3207275
    10. Grass, K., & Holm, C. (2009). Polyelectrolytes in electric fields: measuring the dynamical effective charge and effective friction. Soft Matter, 5(10), Article 10. https://doi.org/10.1039/B822276B
    11. Süzen, M., Sega, M., & Holm, C. (2009). Ensemble inequivalence in single-molecule experiments. Phys. Rev. E, 79(5), Article 5. https://doi.org/10.1103/PhysRevE.79.051118
    12. Ballenegger, V., Arnold, A., & Cerdà, J. J. (2009). Simulations of non-neutral slab systems with long-range electrostatic interactions in two-dimensional periodic boundary conditions. The Journal of Chemical Physics, 131(9), Article 9. https://doi.org/10.1063/1.3216473
    13. Cerdà, J. J., Sintes, T., & Toral, R. (2009). Spherical brushes within spherical cavities: A self-consistent field and Monte Carlo study. The Journal of Chemical Physics, 131(13), Article 13. https://doi.org/10.1063/1.3238568
    14. Ahmed, N. K., & Hecht, M. (2009). A boundary condition with adjustable slip length for lattice Boltzmann simulations. Journal of Statistical Mechanics: Theory and Experiment, 2009(09), Article 09. https://doi.org/10.1088/1742-5468/2009/09/p09017
    15. Cerdà, J. J., Qiao, B., & Holm, C. (2009). Understanding polyelectrolyte multilayers: an open challenge for simulations. Soft Matter, 5(22), Article 22. https://doi.org/10.1039/B912800J
    16. Grass, K., Holm, C., & Slater, G. W. (2009). Optimizing End-Labeled Free-Solution Electrophoresis by Increasing the Hydrodynamic Friction of the Drag Tag. Macromolecules, 42(14), Article 14. https://doi.org/10.1021/ma9003067
    17. Advanced Computer Simulation Approaches for Soft Matter Sciences III. (2009). In C. Holm & K. Kremer (Eds.), Advances in Polymer Science (Vol. 221). Springer. https://doi.org/10.1007/978-3-540-87706-6
  17. 2008

    1. Lind, P. G. (2008). The network approach: basic concepts and algorithms.
    2. Kunert, C., & Harting, J. (2008). On the effect of surfactant adsorption and viscosity change on apparent slip in hydrophobic microchannels. Progress in Computational Fluid Dynamics, An International Journal, 8(1/2/3/4), Article 1/2/3/4. https://doi.org/10.1504/pcfd.2008.018090
    3. Dommert, F., Schmidt, J., Qiao, B., Zhao, Y., Krekeler, C., Site, L. D., Berger, R., & Holm, C. (2008). A comparative study of two classical force fields on statics and dynamics of EMIMBF4 investigated via molecular dynamics simulations. The Journal of Chemical Physics, 129(22), Article 22. https://doi.org/10.1063/1.3030948
    4. Harting, J., Herrmann, H. J., & Ben-Naim, E. (2008). Anomalous distribution functions in sheared suspensions. EPL (Europhysics Letters), 83(3), Article 3. https://doi.org/10.1209/0295-5075/83/30001
    5. Ballenegger, V., Cerda, J. J., Lenz, O., & Holm, Ch. (2008). The optimal P3M algorithm for computing electrostatic energies in periodic systems. The Journal of Chemical Physics, 128(3), Article 3. https://doi.org/10.1063/1.2816570
    6. Lenz, O., & Holm, C. (2008). Simulation of charge reversal in salty environments: Giant overcharging? European Physical Journal E, 26, 191--195. https://doi.org/10.1140/epje/i2007-10260-x
    7. Cerdà, J. J., Kantorovich, S., & Holm, C. (2008). Aggregate formation in ferrofluid monolayers: simulations and theory. Journal of Physics: Condensed Matter, 20(20), Article 20. https://doi.org/10.1088/0953-8984/20/20/204125
    8. Cerdà, J. J., Sintes, T., Holm, C., Sorensen, C. M., & Chakrabarti, A. (2008). Shear effects on crystal nucleation in colloidal suspensions. Phys. Rev. E, 78(3), Article 3. https://doi.org/10.1103/PhysRevE.78.031403
    9. Tyagi, S., Arnold, A., & Holm, C. (2008). Electrostatic layer correction with image charges: A linear scaling method to treat slab 2D$\mathplus$h systems with dielectric interfaces. The Journal of Chemical Physics, 129(20), Article 20. https://doi.org/10.1063/1.3021064
    10. Lind, P. G., Baram, R. M., & Herrmann, H. J. (2008). Obtaining the size distribution of fault gouges with polydisperse bearings. Phys. Rev. E, 77(2), Article 2. https://doi.org/10.1103/PhysRevE.77.021304
    11. Gutsche, C., Kremer, F., Krüger, M., Rauscher, M., Weeber, R., & Harting, J. (2008). Colloids dragged through a polymer solution: Experiment, theory, and simulation. The Journal of Chemical Physics, 129(8), Article 8. https://doi.org/10.1063/1.2965127
    12. Hyväluoma, J., & Harting, J. (2008). Slip Flow Over Structured Surfaces with Entrapped Microbubbles. Phys. Rev. Lett., 100(24), Article 24. https://doi.org/10.1103/PhysRevLett.100.246001
    13. Kantorovich, S., Cerdà, J. J., & Holm, C. (2008). Microstructure analysis of monodisperse ferrofluid monolayers: theory and simulation. Phys. Chem. Chem. Phys., 10(14), Article 14. https://doi.org/10.1039/B719460A
    14. Harting, J., Zauner, T., Weeber, R., & Hilfer, R. (2008). Flow in porous media and driven colloidal suspensions.
    15. Hilfer, R. (2008). Threefold Introduction to Fractional Derivatives. In R. K. et al. (Ed.), Anomalous Transport: Foundations and Applications. Wiley-VCH.
    16. Arnold, A., & Holm, C. (2008). Interactions of like-charged rods at low temperatures: Analytical theory vs. simulations. The European Physical Journal E, 27(1), Article 1. https://doi.org/10.1140/epje/i2007-10347-4
    17. Herrmann, H. J., Harting, J., Hecht, M., & Ben-Naim, E. (2008). Simulation of dense colloids. Brazilian Journal of Physics, 38, 37.
    18. Lind, P. G., & Herrmann, H. J. (2008). Approaches from statistical physics to model and study social networks. In B.-S. Kim (Ed.), Statistical Mechanics Research. Nova Publishers.
    19. Peña, A. A., Lind, P. G., & Herrmann, H. J. (2008). Modeling slow deformation of polygonal particles using DEM. Particuology, 6(6), Article 6. https://doi.org/10.1016/j.partic.2008.07.009
    20. Holm*, C. (2008). Polyelectrolytes-Theory and Simulations. In Soft Matter Characterization (pp. 287--333). Springer Netherlands. https://doi.org/10.1007/978-1-4020-4465-6_6
    21. Kunert, C., & Harting, J. (2008). Simulation of fluid flow in hydrophobic rough microchannels. International Journal of Computational Fluid Dynamics, 22(7), Article 7. https://doi.org/10.1080/10618560802238234
    22. Cerdà, J. J., Ballenegger, V., Lenz, O., & Holm, C. (2008). P                    3                  M              algorithm for dipolar interactions. The Journal of Chemical Physics, 129(23), Article 23. https://doi.org/10.1063/1.3000389
    23. Grass, K., Böhme, U., Scheler, U., Cottet, H., & Holm, C. (2008). Importance of Hydrodynamic Shielding for the Dynamic Behavior of Short Polyelectrolyte Chains. Phys. Rev. Lett., 100(9), Article 9. https://doi.org/10.1103/PhysRevLett.100.096104
    24. Qiao, B., Krekeler, C., Berger, R., Site, L. D., & Holm, C. (2008). Effect of Anions on Static Orientational Correlations, Hydrogen Bonds, and Dynamics in Ionic Liquids:0.167em A Simulational Study. The Journal of Physical Chemistry B, 112(6), Article 6. https://doi.org/10.1021/jp0759067
    25. Harting, J., & Kunert, C. (2008). Boundary effects in microfluidic setups. In G. Münster, D. Wolf, & M. Kremer (Eds.), NIC Symposium 2008 (Vol. 39, pp. 221--228). NIC. http://www.fzjuelich.de/nic-series/volume39/
    26. Harting, J., Kunert, C., & Hyväluoma, J. (2008). Lattice Boltzmann simulations in microfluidics: probing the boundary condition. Microfluidics and Nanofluidics, 8(1), Article 1. https://doi.org/10.1007/s10404-009-0506-6
  18. 2007

    1. Durán, O., Schwämmle, V., Lind, P. G., & Herrmann, H. J. (2007). How barchan dunes distribute over desert.
    2. Harting, J., & Giupponi, G. (2007). Lattice Boltzmann simulations of microemulsions and binary immiscible fluids under shear. In D. K. W. E. Nagel & M. Resch (Eds.), High Performance Computing in Science and Engineering ’07 (pp. 457--470). Springer. https://doi.org/10.1007/978-3-540-74739-0_4
    3. Harting, J., Giupponi, G., & Coveney, P. V. (2007). Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions. Physical Review E, 75, 041504.
    4. Hecht, M. (2007). Simulation of Peloids [Universität Stuttgart, Germany]. http://elib.uni-stuttgart.de/opus/volltexte/2007/2965/
    5. Kunert, C., & Harting, J. (2007). Roughness Induced Boundary Slip in Microchannel Flows. Phys. Rev. Lett., 99(17), Article 17. https://doi.org/10.1103/PhysRevLett.99.176001
    6. Parteli, E. J. R., Durán, O., Schwämmle, V., Herrmann, H. J., & Tsoar, H. (2007). Modeling seif dunes.
    7. Sayar, M., & Holm, C. (2007). Finite-size polyelectrolyte bundles at thermodynamic equilibrium. Europhysics Letters (EPL), 77(1), Article 1. https://doi.org/10.1209/0295-5075/77/16001
    8. Antypov, D., & Holm, C. (2007). Osmotic Coefficient Calculations for Dilute Solutions of Short Stiff-Chain Polyelectrolytes. Macromolecules, 40(3), Article 3. https://doi.org/10.1021/ma062179p
    9. Hecht, M., & Harting, J. (2007). Structural Transitions in Colloidal Suspensions. In D. K. W. E. Nagel & M. Resch (Eds.), High Performance Computing in Science and Engineering ’07 (pp. 45--65). Springer. https://doi.org/10.1007/978-3-540-74739-0_4
    10. Levin, N., Tsoar, H., Maia, L. P., Claudino-Sales, V., Herrmann, H. J., & Durán, O. (2007). Modeling the formation of vegetated arcuate marks behind barchan dunes in NE Brazil.
    11. Lobaskin, V., Dünweg, B., Medebach, M., Palberg, T., & Holm, C. (2007). Electrophoresis of Colloidal Dispersions in the Low-Salt Regime. Phys. Rev. Lett., 98(17), Article 17. https://doi.org/10.1103/PhysRevLett.98.176105
    12. Parteli, E. J. R., Durán, O., & Herrmann, H. J. (2007). Minimal size of a barchan dune. Physical Review E, 75, 011301.
    13. Harting, J., Hecht, M., Kunert, C., & Weeber, R. (2007). Mesoscopic simulations of particle-laden flows. InSide, 5(2), Article 2.
    14. Ivanov, A. O., Kantorovich, S. S., Reznikov, E. N., Holm, C., Pshenichnikov, A. F., Lebedev, A. V., Chremos, A., & Camp, P. J. (2007). Magnetic properties of polydisperse ferrofluids: A critical comparison between experiment, theory, and computer simulation. Phys. Rev. E, 75(6), Article 6. https://doi.org/10.1103/PhysRevE.75.061405
    15. Lind, P. G., Andrade Jr., J. S., da Silva, L. R., & Herrmann, H. J. (2007). The spread of gossip in American schools. Europhysics Letters, 78, 68005.
    16. Durán, O., Schwämmle, V., & Herrmann, H. J. (2007). Barchan dune’s size distribution induced by collisions.
    17. Bürger, R., & Narváez, A. (2007). Steady-state, control, and capacity calculations for flocculated suspensions in clarifier–thickeners. International Journal of Mineral Processing, 84(1–4), Article 1–4. https://doi.org/10.1016/j.minpro.2007.05.009
    18. González, M. C., Herrmann, H. J., Kertész, J., & Vicsek, T. (2007). Community structure and ethnic preferences in school friendship networks. Physica A: Statistical Mechanics and Its Applications, 379(1), Article 1. https://doi.org/10.1016/j.physa.2007.01.002
    19. HECHT, M., HARTING, J., & HERRMANN, H. J. (2007). FORMATION AND GROWTH OF CLUSTERS IN COLLOIDAL SUSPENSIONS. International Journal of Modern Physics C, 18(04), Article 04. https://doi.org/10.1142/s0129183107010735
    20. Hecht, M., Harting, J., & Herrmann, H. J. (2007). Stability diagram for dense suspensions of model colloidal $Al_2O_3$ particles in shear flow. Phys. Rev. E, 75(5), Article 5. https://doi.org/10.1103/PhysRevE.75.051404
    21. Schwämmle, V., González, M. C., Moreira, A. A., Andrade, J. S., & Herrmann, H. J. (2007). Different topologies for a herding model of opinion. Phys. Rev. E, 75(6), Article 6. https://doi.org/10.1103/PhysRevE.75.066108
    22. Biswal, B., Øren, P.-E., Held, R. J., Bakke, S., & Hilfer, R. (2007). Stochastic multiscale model for carbonate rocks. Phys. Rev. E, 75(6), Article 6. https://doi.org/10.1103/PhysRevE.75.061303
    23. Durán, O., Herrmann, H. J., & Maia, L. P. (2007). Evolution of Parabolic dunes in the northeastern Brazil.
    24. Lind, P. G., Andrade Jr., J. S., da Silva, L. R., & Herrmann, H. J. (2007). Spreading gossip in social networks. Physical Review E, 76, 036117.
    25. Lind, P. G., & Herrmann, H. J. (2007). New approaches to model and study social networks. New Journal of Physics, 9, 228.
    26. Lind, P. G., Mora, A., Gallas, J. A. C., & Haase, M. (2007). Minimizing stochasticity in the NAO index. International Journal of Bifurcation and Chaos, 17((10)), Article (10).
    27. Parteli, E. J. R., & Herrmann, H. J. (2007). Saltation transport on Mars. Physical Review Letters, 98, 198001.
  19. 2006

    1. Harting, J., Komnik, A., & Herrmann, H. J. (2006). Lattice-Boltzmann Simulations of Transport Phenomena and Structuring in Suspensions. In P. Walzel, S. Linz, Ch. Krülle, & R. Grochowski (Eds.), Behavior of Granular Media. Shaker.
    2. Harting, J., Hecht, M., & Herrmann, H. J. (2006). Simulation of particle suspensions at the Institute for Computational Physics. In M. R. W. Nagel, W. Jäger (Ed.), High Performance Computing in Science and Engineering ’06. Springer.
    3. Arnold, A., Mann, B. A., & Holm, C. (2006). Simulating Charged Systems with ESPResSo. In M. Ferrario, G. Ciccotti, & K. Binder (Eds.), Computer Simulations in Condensed Matter: from Materials to Chemical Biology (Vol. 703, pp. 193--222). Springer. https://doi.org/10.1007/3-540-35273-2_6
    4. Herrmann, H. J. (2006). Matrix Retina: Wie Bilder im Gehirn verarbeitet ind gespeichert werden. In C. Maar & H. Burda (Eds.), Iconic Worlds (pp. 60--66). Dumont.
    5. Hess, B., Holm, C., & van der Vegt, N. (2006). Osmotic coefficients of atomistic NaCl (aq) force fields. The Journal of Chemical Physics, 124(16), Article 16. https://doi.org/10.1063/1.2185105
    6. Schwämmle, V., Luz-Burgoa, K., de Oliveira, S. M., & Martins, J. S. S. (2006). Phase transition in a mean-field model for sympatric speciation. Physica A, 369(2), Article 2.
    7. Holm, C., Ivanov, A., Kantorovich, S., Pyanzina, E., & Reznikov, E. (2006). Equilibrium properties of a bidisperse ferrofluid with chain aggregates: theory and computer simulations. Journal of Physics: Condensed Matter, 18(38), Article 38. https://doi.org/10.1088/0953-8984/18/38/S14
    8. Parteli, E. J. R., Durán, O., & Herrmann, H. J. (2006). The shape of the Barchan Dunes in the Arkhangelsky Crater on Mars. Proceedings of “Lunar and Planetary Science XXXVII,” 1827.
    9. Gerolymatou, E., Vardoulakis, I., & Hilfer, R. (2006). Modelling infiltration by means of a nonlinear fractional diffusion model. Journal of Physics D, 39, 4104--4110.
    10. Durán, O., & Herrmann, H. (2006). Modelling of saturated sand flux. Journal of Statistical Mechanics: Theory and Experiment, 2006(07), Article 07. https://doi.org/10.1088/1742-5468/2006/07/P07011
    11. Gonzaléz, M. C., Lind, P. G., & Herrmann, H. J. (2006). A system of mobile agents to model social networks. Physical Review Letters, 96, 088702.
    12. Gonzaléz, M. C., Lind, P. G., & Herrmann, H. J. (2006). Model of mobile agents for sexual interactions networks. European Physical Journal B, 49, 371--376.
    13. Biswal, B., Niranjan, B. R., Ullal, G., & Dasgupta, C. (2006). Computational modeling of the dependence of kindling rate on network properties. Physica A: Statistical Mechanics and Its Applications, 364, 565--580.
    14. Bürger, R., Concha, F., Karlsen, K., & Narváez, A. (2006). Numerical simulation of clarifier-thickener units treating ideal suspensions with a flux density function having two inflection points. Mathematical and Computer Modelling, 44, 255--275.
    15. Schwämmle, V., Sousa, A. O., & de Oliveira, S. M. (2006). Monte Carlo Simulations of Parapatric Speciation. European Physical Journal B: Condensed Matter Physics, 51, 563--570. https://doi.org/10.1140/epjb/e2006-00251-5
    16. Kun, F., Hidalgo, R. C., Raischel, F., & Herrmann, H. J. (2006). Extension of fibre bundle models for creep rupture and interface failure. International Journal of Fracture, 140, 255--265.
    17. Kun, F., Wittel, F., Herrmann, H., Kröplin, B., & Maløy, K. (2006). Scaling Behavior of Fragment Shapes. Physical Review Letters, 96(2), Article 2.
    18. Raischel, F., Kun, F., & Herrmann, H. J. (2006). Fiber bundle models for composite materials. Conference on Damage in Composite Materials.
    19. Raischel, F., Kun, F., & Herrmann, H. J. (2006). Local load sharing fiber bundles with a lower cutoff of strength disorder. Phys. Rev. E, 74(3), Article 3. https://doi.org/10.1103/PhysRevE.74.035104
    20. Schatz, V., Tsoar, H., Edgett, K. S., Parteli, E. J. R., & Herrmann, H. J. (2006). Evidence for indurated sand dunes in the Martian north polar region. Journal of Geophysical Research: Planets, 111(E4), Article E4. https://doi.org/10.1029/2005je002514
    21. Durán, O., & Herrmann, H. J. (2006). Vegetation against dune mobility. Physical Review Letters, 97, 188001.
    22. Gonzaléz, M. C., Lind, P. G., & Herrmann, H. J. (2006). Networks based on collisions among mobile agents. Physica D, 224, 137--148.
    23. Gonzaléz, M. C., Sousa, A. O., & Herrmann, H. J. (2006). Renormalizing Sznajd model on complex networks taking into account the effects of growth mechanisms. EPJ B, 49, 253--257.
    24. Gupta, K., Singh, H. P., Biswal, B., & Ramaswamy, R. (2006). Adaptive targeting of chaotic response in periodically stimulated neural systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(2), Article 2.
    25. Harting, J., & Giupponi, G. (2006). Rheological properties of binary and ternary amphiphilic fluid mixtures. In M. R. W. Nagel, W. Jäger (Ed.), High Performance Computing in Science and Engineering ’06. Springer.
    26. Harting, J., Hecht, M., Herrmann, H. J., & McNamara, S. (2006). Computer simulation of particle suspensions. Multifield Problems in Solid and Fluid Mechanis, Lecture Notes in Applied and Computational Mechanics 28, Springer.
    27. de Arcangelis, L., Capano, C. P., & Herrmann, H. J. (2006). Self-organized criticality model for brain plasticity. Physical Review Letters, 96, 028107.
    28. Boettcher, F., Peinke, J., Kleinhans, D., Friedrich, R., Lind, P. G., & Haase, M. (2006). Reconstruction of complex dynamical systems affected by strong measurement noise. Physical Review Letters, 97, 090603.
    29. Hilfer, R. (2006). Macroscopic Capillarity and Hysteresis for Flow in Porous Media. Physical Review E, 73, 016307.
    30. Hilfer, R., & Seybold, H. J. (2006). Computation of the Generalized Mittag-Leffler Function and its Inverse in the Complex Plane. Integral Transforms and Special Functions, 17(9), Article 9.
    31. Tyagi, S. (2006). Evaluation of Coulomb potential in a triclinic cell with periodic boundary conditions. Molecular Physics, 104, 2433--2438.
    32. Lind, P. G., Nunes, A., & Gallas, J. A. C. (2006). Impact of bistability in the synchronization of chaotic maps with delayed coupling. Physica A, 371, 100--103.
    33. McNamara, S., Strauß, M., Zeller, F., & Herrmann, H. J. (2006). Simulations of dense-phase pneumatic conveying. In P. Walzel, S. Linz, Ch. Krülle, & R. Grochowski (Eds.), Behavior of Granular Media (Vol. 9, pp. 17--23). Shaker Verlag. https://www.shaker.eu/en/content/catalogue/index.asp?lang=en&ID=8&ISBN=978-3-8322-5524-4
    34. Parteli, E. J. R., Schwämmle, V., Herrmann, H. J., Monteiro, L. H. U., & Maia, L. P. (2006). Profile measurement and simulation of a transverse dune field in the Lencóis Maranhenses. Geomorphology, 81(1–2), Article 1–2. https://doi.org/10.1016/j.geomorph.2006.02.015
    35. Raischel, F., Kun, F., Hidalgo, R. C., & Herrmann, H. J. (2006). Statistical Damage Models: Fiber Bundle Models. In Damage and its Evolution in Fiber-Composite Materials: Simulation and Non-Destructive Evaluation (pp. 443--471). Universität Stuttgart.
    36. Giupponi, G., Harting, J., & Coveney, P. V. (2006). Emergence of rheological properties in lattice Boltzmann simulations of gyroid mesophases. Europhysics Letters, 73, 533--539.
    37. Almeida, M. P., Andrade Jr., J. S., & Herrmann, H. J. (2006). Aeolian transport layer. Physical Review Letters, 1, Article 1.
    38. Herrmann, H. J., Mahmoodi-Baram, R., & Wackenhut, M. (2006). Dense Packings. Brazilian Journal of Physics, 36, 610--613.
    39. Strauss, M., Herrmann, H. J., McNamara, S., Niederreiter, G., & Sommer, K. (2006). Plug conveying in a vertical tube. Powder Technology, 162, 16--26.
    40. Stukan, M. R., Lobaskin, V., Holm, C., & Vinogradova, O. I. (2006). Spatial distribution of polyelectrolyte and counterions in nanocapsules: A computer simulation study. Phys. Rev. E, 73(2), Article 2. https://doi.org/10.1103/PhysRevE.73.021801
    41. Hilfer, R. (2006). Macroscopic capillarity without a constitutive capillary pressure function. Physica A, 371, 209--225.
    42. Tyagi, S. (2006). Logarithmic interaction under periodic boundary conditions: closed form formulas for energy and forces. Molecular Physics, 104, 359--363.
    43. Mann, B. A., Kremer, K., & Holm, C. (2006). The Swelling Behavior of Charged Hydrogels. Macromolecular Symposia, 237(1), Article 1. https://doi.org/10.1002/masy.200650511
    44. Mühlbacher, F., Holm, C., & Schiessel, H. (2006). Controlled DNA compaction within chromatin: The tail-bridging effect. Europhysics Letters, 73(1), Article 1. https://doi.org/10.1209/epl/i2005-10351-4
    45. Schwämmle, V. (2006). Phase transition in a sexual age-structured model of learning foreign languages. International Journal of Modern Physics C, 17(1), Article 1.
    46. Schwämmle, V., & Brigatti, E. (2006). Speciational view of macroevolution: Are micro and macroevolution decoupled? Europhysics Letters, 75, 342--348. https://doi.org/10.1209/epl/i2006-10095-7
    47. Gerolymatou, E., Vardoulakis, I., & Hilfer, R. (2006). Modeling Infiltration by Means of a Fractional Diffusion Equation. Journal of Physics D, 39, 4104--4110.
    48. Harting, J., Kunert, C., & Herrmann, H. J. (2006). Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels. Europhysics Letters, 75, 328--334. https://doi.org/10.1209/epl/i2006-10107-8
    49. Antypov, D., & Holm, C. (2006). Optimal Cell Approach to Osmotic Properties of Finite Stiff-Chain Polyelectrolytes. Phys. Rev. Lett., 96(8), Article 8. https://doi.org/10.1103/PhysRevLett.96.088302
    50. Hecht, M., Harting, J., Bier, M., Reinshagen, J., & Herrmann, H. J. (2006). Shear viscosity of claylike colloids in computer simulations and experiments. Phys. Rev. E, 74(2), Article 2. https://doi.org/10.1103/PhysRevE.74.021403
    51. Hilfer, R. (2006). Capillary Pressure, Hysteresis and Residual Saturation in Porous Media. Physica A, 359, 119--128.
    52. Holm, C., Ivanov, A., Kantorovich, S., & Pyanzina, E. (2006). Polydispersity Influence upon Magnetic Properties of Aggregated Ferrofluids. Zeitschrift Für Physikalische Chemie, 220(1), Article 1. https://doi.org/doi:10.1524/zpch.2006.220.1.105
    53. Limbach, H. J., Arnold, A., Mann, B. A., & Holm, C. (2006). ESPResSo—an extensible simulation package for research on soft matter systems. Computer Physics Communications, 174(9), Article 9. https://doi.org/10.1016/j.cpc.2005.10.005
    54. Mühlbacher, F., Schiessel, H., & Holm, C. (2006). Tail-induced attraction between nucleosome core particles. Phys. Rev. E, 74(3), Article 3. https://doi.org/10.1103/PhysRevE.74.031919
  20. 2005

    1. Antypov, D., Barbosa, M. C., & Holm, C. (2005). Incorporation of excluded-volume correlations into Poisson-Boltzmann theory. Physical Review E, 71(6), Article 6. https://doi.org/10.1103/PhysRevE.71.061106
    2. Gallas, J. A. C., & Herrmann, H. J. (2005). Spontaneous emergence of spatio-temporal order in class 4 automata. Physica A, 356, 78--82.
    3. Gonzaléz, M. C., Herrmann, H. J., & Araújo, A. D. (2005). Cluster size distribution of infection in a system of mobile agents. Physica A, 356, 100--106.
    4. Rech, P. C., Beims, M. W., & Gallas, J. A. C. (2005). Basin size evolution between dissipative and conservative limits. Phys. Rev. E, 71(1), Article 1. https://doi.org/10.1103/PhysRevE.71.017202
    5. Schwämmle, V., & Herrmann, H. J. (2005). Reply to the discussion on ``Barchan Dunes: why they cannot be treated as `solitons’ or `solitary waves’’’. Earth Surface Processes and Landforms, 30, 517.
    6. Huang, J. P., Wang, Z. W., & Holm, C. (2005). Structure and magnetic properties of mono- and bi-dispersed ferrofluids as revealed by simulations. Journal of Magnetism and Magnetic Materials, 289, 234--237. https://doi.org/10.1016/j.jmmm.2004.11.067
    7. Limbach, H. J., Holm, C., & Kremer, K. (2005). Computer Simulations of the “Hairy Rod” Model. Macromolecular Chemistry and Physics, 206(1), Article 1. https://doi.org/10.1002/macp.200400286
    8. Lind, P. G., González, M. C., & Herrmann, H. J. (2005). Cycles and clustering in bipartite networks. Phys. Rev. E, 72(5), Article 5. https://doi.org/10.1103/PhysRevE.72.056127
    9. Andrade, R. F. S., & Herrmann, H. J. (2005). Magnetic models on Apollonian networks. Physical Review E, 71, 056131.
    10. SCHWÄMMLE, V. (2005). SIMULATION FOR COMPETITION OF LANGUAGES WITH AN AGING SEXUAL POPULATION. International Journal of Modern Physics C, 16(10), Article 10. https://doi.org/10.1142/s0129183105008084
    11. Schwämmle, V., & de Oliveira, S. M. (2005). Simulations of a mortality plateau in the sexual Penna model for biological ageing. Physical Review E, 72, 031911.
    12. Schatz, V., & Herrmann, H. J. (2005). Flow separation in the lee of transverse dunes. In R. Garcia-Rojo, H. J. Herrmann, & S. McNamara (Eds.), Proceedings of Powders and Grains 2005 (pp. 955--958). Balkema, Leiden.
    13. Holm, C., & Weis, J.-J. (2005). The Structure of Ferrofluids: A Status Report. Current Opinion in Colloid & Interface Science, 10(3), Article 3. https://doi.org/10.1016/j.cocis.2005.07.005
    14. Kun, F., Wittel, F. K., Herrmann, H. J., & Kröplin, B. H. (2005). Scaling laws of fragment shapes.
    15. Osanloo, F., McNamara, S., & Herrmann, H. J. (2005). A simple model of sediment transport. In R. Garcia-Rojo, H. J. Herrmann, & S. McNamara (Eds.), Proceedings of Powders and Grains 2005 (pp. 1005--1008). Balkema, Leiden.
    16. Herrmann, H. J., & Schatz, V. (2005). Numerical methods for aeolian transport. In B. M. A. Garstecki & N. Sczygiol (Eds.), Computer Methods in Mechanics 2005 (pp. 13--14). Czestochowa.
    17. Alam, M., Arakeri, V. H., Nott, P. R., Goddard, J. D., & Herrmann, H. J. (2005). Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow. Journal of Fluid Mechanics, 523, 277--306.
    18. Arnold, A., & Holm, C. (2005). MMM1D: A method for calculating electrostatic interactions in one-dimensional periodic geometries. The Journal of Chemical Physics, 123(14), Article 14. https://doi.org/10.1063/1.2052647
    19. Harting, J., Chin, J., Venturoli, M., & Coveney, P. V. (2005). Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational Grids. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1833), Article 1833. https://doi.org/10.1098/rsta.2005.1618
    20. Gerolymatou, E., Vardoulakis, I., & Hilfer, R. (2005). Simulating the Saturation Front Using a Fractional Diffusion Model. In G. Georgiou, P. Papanastasiou, & M. Papadrakakis (Eds.), Proceedings of the GRACM05 International Congress on Computational Mechanics, Limassol 2005 (p. 653). GRACM.
    21. Raischel, F., Kun, F., & Herrmann, H. J. (2005). Simple beam model for the shear failure of interfaces. Phys. Rev. E, 72(4), Article 4. https://doi.org/10.1103/PhysRevE.72.046126
    22. Raischel, F., Kun, F., & Herrmann, H. J. (2005). Failure process of a bundle of plastic fibers.
    23. Ribeiro, A. S., & Lind, P. G. (2005). Effects of lattice structure in the dynamics of coupled elements. Physica Scripta, T118, 165--167.
    24. Tyagi, S. (2005). Rapid evaluation of the periodic Green function in d dimensions. Journal of Physics A: Mathematical and General, 38(31), Article 31. https://doi.org/10.1088/0305-4470/38/31/008
    25. Tyagi, S. (2005). New Series Representation for the Madelung Constant. Progress of Theoretical Physics, 114(3), Article 3. https://doi.org/10.1143/PTP.114.517
    26. Wackenhut, M., & Herrmann, H. J. (2005). The reversible polydisperse parking lot model. Physical Review E, 68, 041303.
    27. Wittel, F. K., Kun, F., Herrmann, H. J., & Kröplin, B. H. (2005). Breakup of shells under explosion and impact. Phys. Rev. E, 71(1), Article 1. https://doi.org/10.1103/PhysRevE.71.016108
    28. Wackenhut, M., McNamara, S., & Herrmann, H. J. (2005). A hierarchical model for simulating very polydisperse granular media. In R. Garcia-Rojo, H. J. Herrmann, & S. McNamara (Eds.), Proceedings of Powders and Grains 2005 (pp. 1311--1315). Balkema, Leiden.
    29. Huang, J. P., Wang, Z. W., & Holm, C. (2005). Computer simulations of the structure of colloidal ferrofluids. Phys. Rev. E, 71(6), Article 6. https://doi.org/10.1103/PhysRevE.71.061203
    30. Hecht, M., Harting, J., Ihle, T., & Herrmann, H. J. (2005). Simulation of claylike colloids. Phys. Rev. E, 72(1), Article 1. https://doi.org/10.1103/PhysRevE.72.011408
    31. Herrmann, H. J., Durán, O., Parteli, E. J. R., & Schatz, V. (2005). Vegetation and induration as sand dunes stabilizators. Journal of Coastal Research.
    32. Lind, P. G., Mora, A., Gallas, J. A. C., & Haase, M. (2005). Reducing stochasticity in the North Atlantic Oscillation index with coupled Langevin equations. Phys. Rev. E, 72(5), Article 5. https://doi.org/10.1103/PhysRevE.72.056706
    33. Luding, S., Manetsberger, K., & Muellers, J. (2005). A discrete model for long time sintering. Journal of the Mechanics and Physics of Solids, 53(2), Article 2.
    34. Parteli, E. J. R. (2005). Das sich entziehende Land - Zur Physik der Düne und des Treibsands. In J. Badura & S. Schmidt (Eds.), Niemandsland - Topographische Ausflüge zwischen Wissenschaft und Kunst (pp. 44--49). Universität Stuttgart.
    35. Herrmann, H. J., Sauermann, G., & Schwämmle, V. (2005). The morphology of dunes. Physica A, 358, 30--38.
    36. Hidalgo, R. C., Kun, F., & Herrmann, H. J. (2005). Slow relaxation of fiber composites, variable range of interaction approach. Physica A, 347, 402--410.
    37. Behera, B., Kun, F., McNamara, S., & Herrmann, H. J. (2005). Fragmentation of a circular disc by impact on a frictionless plate. Journal of Physics: Condensed Matter, 17, S2439--S2456.
    38. Behera, B., Kun, F., McNamara, S., & Herrmann, H. J. (2005). Fragmentation of a circular disc by projectiles. Cond-Mat, 0404057.
    39. Fonseca, F., & Herrmann, H. J. (2005). Simulation of the sedimentation of a falling oblate ellipsoid. Physica A, 345, 341--355.
    40. González, G., Lind, P. G., & Herrmann, H. J. (2005). Model of mobile agents for sexual interaction networks. Physics, 0508145.
    41. Schwämmle, V., & Herrmann, H. J. (2005). A model of Barchan dunes including lateral shear stress. European Physical Journal E, 16, 57--65.
    42. Hilfer, R., Biswal, B., Mattutis, H. G., & Janke, W. (2005). Multicanonical Simulations of the Tails of the Order-Parameter Distribution of the two-dimensional Ising Model. Computer Physics Communications, 169, 230.
    43. Holm, C. (2005). The Physics of Overcharging. In S. P. Hoogendoorn, S. Luding, P. H. L. Bovy, M. Schreckenberg, & D. E. Wolf (Eds.), Traffic and Granular Flow ’03 (pp. 475--488). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-28091-x_47
    44. Lind, P. G., & Gallas, J. A. C. (2005). Inducing periodicity in lattices of chaotic maps with advection. Physica Scripta, T118, 143--147.
    45. Herrmann, H. J., Andrade Jr., J. S., Schatz, V., Sauermann, G., & Parteli, E. J. R. (2005). Calculation of the separation streamlines of barchans and transverse dunes. Physica A, 357, 44--49.
    46. Mann, B. A., Holm, C., & Kremer, K. (2005). Swelling of polyelectrolyte networks. The Journal of Chemical Physics, 122(15), Article 15. https://doi.org/10.1063/1.1882275
    47. Herrmann, H. J. (2005). Spuren im Sand. Physik Journal, 4, 57--60.
    48. Herrmann, H. J. (2005). Dune formation. In A. Scott (Ed.), Encyclopedia of Nonlinear Science (pp. 238--240). Routledge.
    49. McNamara, S., García-Rojo, R., & Herrmann, H. J. (2005). The stress-strain curve of cyclic loading: microscopic, analytical results. In R. Garcia-Rojo, H. J. Herrmann, & S. McNamara (Eds.), Proceedings of Powders and Grains 2005 (pp. 295--299). Balkema, Leiden.
    50. Hilfer, R. (2005). Applications of Fractional Calculus in Physics. SICAM, 1, 97.
    51. Parteli, E. J. R., Gomes, M. A. F., & Brito, V. P. (2005). Nontrivial temporal scaling in a Galilean stick-slip dynamics. Phys. Rev. E, 71(3), Article 3. https://doi.org/10.1103/PhysRevE.71.036137
    52. Herrmann, H. J., Parteli, E. J. R., Schwämmle, V., Monteiro, L. H. U., & Maia, L. P. (2005). The coastal dunes of the Lencois Maranhenses. Journal of Coastal Research.
    53. Holm, C. Dr., & Kremer, K. Prof. Dr. (Eds.). (2005). Advanced Computer Simulation. Springer Berlin Heidelberg. https://doi.org/10.1007/b98052
    54. Holm, C., & Kremer, K. (Eds.). (2005). Advanced Computer Simulation Approaches for Soft Matter Sciences II. Springer-Verlag. https://doi.org/10.1007/b136792
    55. Arnold, A., & Holm, C. (2005). Efficient Methods to Compute Long-Range Interactions for Soft Matter Systems. In C. Holm & K. Kremer (Eds.), Advanced Computer Simulation Approaches for Soft Matter Sciences II (pp. 59--109). Springer Berlin Heidelberg. https://doi.org/10.1007/b136793
    56. Durán, O., Schwämmle, V., & Herrmann, H. J. (2005). Breeding and Solitary Wave Behavior of Dunes. Physical Review E, 72, 021308.
    57. Durán, O., Schatz, V., Herrmann, H. J., & Tsoar, H. (2005). Transformation of Barchans into Parabolic Dunes under the Influence of Vegetation. In R. Garcia-Rojo, H. J. Herrmann, & S. McNamara (Eds.), Proceedings of Powders and Grains 2005 (pp. 951--954,). Balkema, Leiden.
    58. David, C. T., García-Rojo, R., Herrmann, H. J., & Luding, S. (2005). Hysteresis and creep in powders and grains. In R. Garcia-Rojo, H. J. Herrmann, & S. McNamara (Eds.), Proceedings of Powders and Grains 2005 (pp. 291--294). Balkema, Leiden.
    59. na, A. A. P., Lizcano, A., Alonso-Marroquin, F., & Herrmann, H. J. (2005). Investigation of the asymptotic states of granular materials using a discrete model of anisotropic particles. Proceedings of Powders and Grains 2005, 1, 697--700.
    60. Seybold, H. J., & Hilfer, R. (2005). Numerical Results for the Generalized Mittag-Leffler Function. Fractional Calculus and Applied Analysis, 8(2), Article 2.
    61. Wackenhut, M., McNamara, S., & Herrmann, H. J. (2005). Shearing behaviour of polydisperse media. European Physical Journal E, 17, 237--246.
    62. Joseph, T., Helmig, R., & Hilfer, R. (2005). Effects of Heterogeneity on Upscaling of Two Phase Flow in Anisotropic Porous Media. Physical Review E, submitted, preprint.
    63. LEE, J. H., SOUSA, A. O., PARTELI, E. J. R., & HERRMANN, H. J. (2005). MODELLING FORMATION AND EVOLUTION OF TRANSVERSE DUNE FIELDS. International Journal of Modern Physics C, 16(12), Article 12. https://doi.org/10.1142/s0129183105008400
    64. Herbst, O., Cafiero, R., Zippelius, A., Herrmann, H. J., & Luding, S. (2005). A driven two-dimensional granular gas with Coulomb friction. Cond-Mat, 0501223.
    65. McNamara, S., Garc\’ıa-Rojo, R., & Herrmann, H. (2005). Indeterminacy and the onset of motion in a simple granular packing. Phys. Rev. E, 72(2), Article 2. https://doi.org/10.1103/PhysRevE.72.021304
    66. Parteli, E. J. R., Schatz, V., & Herrmann, H. J. (2005). Barchan dunes on Mars and on Earth. In H. J. H. R. Garcia-Rojo & S. McNamara (Eds.), Proceedings of Powders and Grains 2005 (pp. 959--962). Balkema.
To the top of the page