This image shows David Beyer

David Beyer

PhD Student
Institute for Computational Physics

Contact

Allmandring 3
70569 Stuttgart
Germany
Room: 1.039

  1. 2025

    1. Burth, L., Beyer, D., & Holm, C. (2025). A Comparison of Bead-Spring and Site-Binding Models for Weak Polyelectrolytes. https://doi.org/10.26434/chemrxiv-2025-v96zp
    2. Brito, M. E., Höpner, E., Beyer, D., & Holm, C. (2025). Modeling Swelling of pH-Responsive Microgels: Theory and Simulations. Macromolecules. https://doi.org/10.1021/acs.macromol.4c03124
  2. 2024

    1. Beyer, D., Torres, P. B., Pineda, S. P., Narambuena, C. F., Grad, J.-N., Košovan, P., & Blanco, P. M. (2024). pyMBE: The Python-based molecule builder for ESPResSo. The Journal of Chemical Physics, 161(2), Article 2. https://doi.org/10.1063/5.0216389
    2. Radhakrishnan, K., Beyer, D., & Holm, C. (2024). How Charge Regulation Affect Protein Uptake in Weak Polyelectrolyte Brushes. https://doi.org/10.26434/chemrxiv-2024-b10lj
    3. Beyer, D., Blanco, P. M., Landsgesell, J., Kosovan, P., & Holm, C. (2024). How to Correct Systematic Errors in Constant-pH Ensemble Simulations. https://doi.org/10.26434/chemrxiv-2024-d4dbh
    4. Weeber, R., Grad, J.-N., Beyer, D., Blanco, P. M., Kreissl, P., Reinauer, A., Tischler, I., Košovan, P., & Holm, C. (2024). ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems. In M. Yáñez & R. J. Boyd (Eds.), Comprehensive Computational Chemistry (First Edition) (First Edition, pp. 578–601). Elsevier. https://doi.org/10.1016/B978-0-12-821978-2.00103-3
    5. Vogel, P., Beyer, D., Holm, C., & Palberg, T. (2024). CO2-induced Drastic Decharging of Dielectric Surfaces in Aqueous Suspensions. https://doi.org/doi.org/10.48550/arXiv.2409.03049
    6. Beyer, D., & Holm, C. (2024). Unexpected Two-Stage Swelling of Weak Polyelectrolyte Brushes with Divalent Counterions. https://doi.org/10.26434/chemrxiv-2024-xxjr1
  3. 2023

    1. Weeber, R., Grad, J.-N., Beyer, D., Blanco, P. M., Kreissl, P., Reinauer, A., Tischler, I., Košovan, P., & Holm, C. (2023). ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-821978-2.00103-3
    2. Beyer, D., & Holm, C. (2023). A generalized grand-reaction method for modeling the exchange of weak (polyprotic) acids between a solution and a weak polyelectrolyte phase. The Journal of Chemical Physics, 159(1), Article 1. https://doi.org/10.1063/5.0155973
    3. Beyer, D., Koss\fiovan, P., & Holm, C. (2023). Explaining Giant Apparent $pK_a$ Shifts in Weak Polyelectrolyte Brushes. Phys. Rev. Lett., 131(16), Article 16. https://doi.org/10.1103/PhysRevLett.131.168101
    4. Gravelle, S., Beyer, D., Brito, M., Schlaich, A., & Holm, C. (2023). Assessing the validity of NMR relaxation rates obtained from coarse-grained simulations of PEG-water mixtures. https://doi.org/10.26434/chemrxiv-2022-f90tv-v4
    5. Gravelle, S., Beyer, D., Brito, M., Schlaich, A., & Holm, C. (2023). Assessing the Validity of NMR Relaxation Rates Obtained from Coarse-Grained Simulations of PEG–Water Mixtures. The Journal of Physical Chemistry B, 127(25), Article 25. https://doi.org/10.1021/acs.jpcb.3c01646
    6. Košovan, P., Landsgesell, J., Nová, L., Uhlík, F., Beyer, D., Blanco, P. M., Staňo, R., & Holm, C. (2023). Reply to the ‘Comment on “Simulations of ionization equilibria in weak polyelectrolyte solutions and gels”’ by J. Landsgesell, L. Nová, O. Rud, F. Uhlík, D. Sean, P. Hebbeker, C. Holm and P. Košovan, Soft Matter, 2019, 15, 1155–1185. Soft Matter, 19(19), Article 19. https://doi.org/10.1039/D3SM00155E
  4. 2022

    1. Beyer, D., Landsgesell, J., Hebbeker, P., Rud, O., Lunkad, R., Kosovan, P., & Holm, C. (2022). Correction to “Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning.” Macromolecules, 55(3), Article 3. https://doi.org/10.1021/acs.macromol.1c02672
    2. Landsgesell, J., Beyer, D., Hebbeker, P., Kosovan, P., & Holm, C. (2022). The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. Macromolecules, 55(8), Article 8. https://doi.org/10.1021/acs.macromol.1c02489
    3. Beyer, D., Kosovan, P., & Holm, C. (2022). Simulations Explain the Swelling Behavior of Hydrogels with Alternating Neutral and Weakly Acidic Blocks. Macromolecules, 55(23), Article 23. https://doi.org/10.1021/acs.macromol.2c01916
Lectures
Supervised Students
  • Devashish Tiwari, DAAD Internship Project
    "Path Integral Molecular Dynamics Simulations using ESPResSo" (2023).
  • Loris Burth, B.Sc. thesis and Propaedeuticum (SimTech)
    "Coarse-Grained Simulations of Weak Polyelectrolytes" (2023).
To the top of the page