Contact
Allmandring 3
70569 Stuttgart
Germany
Room: 1.039
2025
- Burth, L., Beyer, D., & Holm, C. (2025). A Comparison of Bead-Spring and Site-Binding Models for Weak Polyelectrolytes. https://doi.org/10.26434/chemrxiv-2025-v96zp
- Brito, M. E., Höpner, E., Beyer, D., & Holm, C. (2025). Modeling Swelling of pH-Responsive Microgels: Theory and Simulations. Macromolecules. https://doi.org/10.1021/acs.macromol.4c03124
2024
- Beyer, D., Torres, P. B., Pineda, S. P., Narambuena, C. F., Grad, J.-N., Košovan, P., & Blanco, P. M. (2024). pyMBE: The Python-based molecule builder for ESPResSo. The Journal of Chemical Physics, 161(2), Article 2. https://doi.org/10.1063/5.0216389
- Radhakrishnan, K., Beyer, D., & Holm, C. (2024). How Charge Regulation Affect Protein Uptake in Weak Polyelectrolyte Brushes. https://doi.org/10.26434/chemrxiv-2024-b10lj
- Beyer, D., Blanco, P. M., Landsgesell, J., Kosovan, P., & Holm, C. (2024). How to Correct Systematic Errors in Constant-pH Ensemble Simulations. https://doi.org/10.26434/chemrxiv-2024-d4dbh
- Weeber, R., Grad, J.-N., Beyer, D., Blanco, P. M., Kreissl, P., Reinauer, A., Tischler, I., Košovan, P., & Holm, C. (2024). ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems. In M. Yáñez & R. J. Boyd (Eds.), Comprehensive Computational Chemistry (First Edition) (First Edition, pp. 578–601). Elsevier. https://doi.org/10.1016/B978-0-12-821978-2.00103-3
- Vogel, P., Beyer, D., Holm, C., & Palberg, T. (2024). CO2-induced Drastic Decharging of Dielectric Surfaces in Aqueous Suspensions. https://doi.org/doi.org/10.48550/arXiv.2409.03049
- Beyer, D., & Holm, C. (2024). Unexpected Two-Stage Swelling of Weak Polyelectrolyte Brushes with Divalent Counterions. https://doi.org/10.26434/chemrxiv-2024-xxjr1
2023
- Weeber, R., Grad, J.-N., Beyer, D., Blanco, P. M., Kreissl, P., Reinauer, A., Tischler, I., Košovan, P., & Holm, C. (2023). ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-821978-2.00103-3
- Beyer, D., & Holm, C. (2023). A generalized grand-reaction method for modeling the exchange of weak (polyprotic) acids between a solution and a weak polyelectrolyte phase. The Journal of Chemical Physics, 159(1), Article 1. https://doi.org/10.1063/5.0155973
- Beyer, D., Koss\fiovan, P., & Holm, C. (2023). Explaining Giant Apparent $pK_a$ Shifts in Weak Polyelectrolyte Brushes. Phys. Rev. Lett., 131(16), Article 16. https://doi.org/10.1103/PhysRevLett.131.168101
- Gravelle, S., Beyer, D., Brito, M., Schlaich, A., & Holm, C. (2023). Assessing the validity of NMR relaxation rates obtained from coarse-grained simulations of PEG-water mixtures. https://doi.org/10.26434/chemrxiv-2022-f90tv-v4
- Gravelle, S., Beyer, D., Brito, M., Schlaich, A., & Holm, C. (2023). Assessing the Validity of NMR Relaxation Rates Obtained from Coarse-Grained Simulations of PEG–Water Mixtures. The Journal of Physical Chemistry B, 127(25), Article 25. https://doi.org/10.1021/acs.jpcb.3c01646
- Košovan, P., Landsgesell, J., Nová, L., Uhlík, F., Beyer, D., Blanco, P. M., Staňo, R., & Holm, C. (2023). Reply to the ‘Comment on “Simulations of ionization equilibria in weak polyelectrolyte solutions and gels”’ by J. Landsgesell, L. Nová, O. Rud, F. Uhlík, D. Sean, P. Hebbeker, C. Holm and P. Košovan, Soft Matter, 2019, 15, 1155–1185. Soft Matter, 19(19), Article 19. https://doi.org/10.1039/D3SM00155E
2022
- Beyer, D., Landsgesell, J., Hebbeker, P., Rud, O., Lunkad, R., Kosovan, P., & Holm, C. (2022). Correction to “Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning.” Macromolecules, 55(3), Article 3. https://doi.org/10.1021/acs.macromol.1c02672
- Landsgesell, J., Beyer, D., Hebbeker, P., Kosovan, P., & Holm, C. (2022). The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. Macromolecules, 55(8), Article 8. https://doi.org/10.1021/acs.macromol.1c02489
- Beyer, D., Kosovan, P., & Holm, C. (2022). Simulations Explain the Swelling Behavior of Hydrogels with Alternating Neutral and Weakly Acidic Blocks. Macromolecules, 55(23), Article 23. https://doi.org/10.1021/acs.macromol.2c01916
Lectures
- Computergrundlagen (WS 23/24)
- Simulation Methods in Physics I (WS 22/23)
- Simulation Methods in Physics II (SS 22)
- ESPResSo Block course (WS 21/22)
- Hauptseminar "Porous Media" (SS 21)
- Computergrundlagen (WS 20/21)
- Grundlagen der Experimentalphysik II (SS 19)
- Grundlagen der Experimentalphysik I (WS 18/19)
Supervised Students
- Devashish Tiwari, DAAD Internship Project
"Path Integral Molecular Dynamics Simulations using ESPResSo" (2023). - Loris Burth, B.Sc. thesis and Propaedeuticum (SimTech)
"Coarse-Grained Simulations of Weak Polyelectrolytes" (2023).
Posters
2023
- Path Integral Molecular Dynamics Simulations Using ESPResSo (ESPResSo summer school, Stuttgart, October 2023)
- A Generalized Grand-Reaction Method for Modeling the Exchange of Weak (Polyprotic) Acids between a Solution and a Weak Polyelectrolyte Phase (International Symposium on Polyelectrolytes, Prague, August 2023)
2022
- Coarse-Grained Simulations of Weak Polyelectrolyte Hydrogels (ESPResSo summer school, Stuttgart, October 2022)
- Huge pKa-Shifts in Weak Polyelectrolyte Brushes Explained by Coarse-Grained Simulations (DPG Meeting Regensburg, September 2022)
- Coarse-Grained Simulations of Two-Phase Weak Polylectrolyte Systems (MolSim2022 winter school, January 2022)
2021
Data Repositories
2023
- Scripts and Data for "A Generalized Grand-Reaction-Method for Modelling the Exchange of Weak (Polyprotic) Acids between a Solution and a Weak Polyelectrolyte Phase"
- Scripts for "Assessing the validity of NMR relaxation rates obtained from coarse-grained simulations"
2022
- Electronic Supporting Information and Data for: Simulations Explain the Swelling Behavior of Hydrogels with Alternating Neutral and Weakly Acidic Blocks
- Electronic Supporting Information and Data for: The pH-dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution