Difference between revisions of "Simulation Methods in Physics II SS 2019"

From ICPWiki
Jump to: navigation, search
(Worksheet 1: Quantum chemistry and simple models)
(Worksheet 1: Quantum chemistry and simple models)
Line 127: Line 127:
 
==== Worksheet 1: Quantum chemistry and simple models ====
 
==== Worksheet 1: Quantum chemistry and simple models ====
 
* Deadline: '''May 1, 2019, 13:00''' by email to [[Maofeng Dou]] use '''SM2_01''' as subject line.
 
* Deadline: '''May 1, 2019, 13:00''' by email to [[Maofeng Dou]] use '''SM2_01''' as subject line.
* {{Download|SMII_SS2019_WS1.pdf|Worksheet 1}}[[Media:SMII_SS2019_WS1.ogg]]
+
* {{Download|SMII_SS2019_WS1.pdf|Worksheet 1}}
 
* {{Download|templates_SMII_SS2019_WS1.tar|template}} - input files
 
* {{Download|templates_SMII_SS2019_WS1.tar|template}} - input files
  

Revision as of 10:44, 17 April 2019

Overview

Type
Lecture (2 SWS) and Tutorials "Simulationsmethoden in der Praxis" (2 SWS)
Lecturer
JP Dr. Maria Fyta
Course language
English
Location and Time
Lecture: Thu, 11:30 - 13:00; ICP, Allmandring 3, Seminar Room (room 01.079)
Tutorials: Thu 14:00 - 15:30; Thu 09:45-11:15 (extra tutoring time when the tutors will be partly available); Tutors: Dr. Maofeng Dou, Dr. Kartik Jain; ICP, Allmandring 3, CIP-Pool (room 01.033)

The tutorials have their own title "Simulationsmethoden in der Praxis", as they can be attended independently of the lecture and are in fact part part of the Physics MSc module "Fortgeschrittene Simulationsmethoden" and not of the module containing the lecture "Simulation Methods in Physics II".

These hands-on-tutorials will take place in the CIP-Pool of the ICP, Allmandring 3. They consist of practical exercises at the computer, like small programming tasks, simulations, visualization and data analysis. The tutorials build on each other, therefore continuous attendance is expected.

Scope

The course intends to give an overview about modern simulation methods used in physics today. The stress of the lecture will be to introduce different approaches to simulate a problem, hence we will not go too to deep into specific details but rather try to cover a broad range of methods. For an idea about the content look at the lecture schedule.

Prerequisites

We expect the participants to have basic knowledge in classical and statistical mechanics, thermodynamics, electrodynamics, and partial differential equations, as well as knowledge of a programming language. The knowledge of the previous course Simulation Methods I is expected.

Certificate Requirements

1. Obtaining 50% of the possible marks in the hand-in exercises.

The final grade will be determined from the final oral examination.

Oral Examination

Please email to Christian Holm or Maria Fyta in order to arrange a date for the oral examination.

Recommended literature

Useful online resources

  • Roethlisberger, Tavernelli, EPFL, Lausanne, 2015: [1]
  • Linux cheat sheet application_pdf.pnghere (53 KB)Info circle.png.
  • Density-functional-theory tight-binding (DFTB): Phil. Trans. R. Soc. A, 372(2011), 20120483. [2], Computational Materials Science 47 (2009) 237–253 [3]
  • "Ab Initio Molecular Dynamics: Theory and Implementation" in Modern Methods and Algorithms, NIC Series Vol 1. (2000) [4]
  • University Intranet: Quantentheorie der Molekuele (DE), Springer Spektrum 2015, [5]
  • Be careful when using Wikipedia as a resource. It may contain a lot of useful information, but also a lot of nonsense, because anyone can write it.

Lecture

The lecture notes will be uploaded in due time after each lecture. In order to access these from outside the University or VPN (ask your tutor about this).

Date Subject Resources
11.04.2019 Introduction/organisation, electronic structure application_pdf.png Lecture Notes (2.62 MB)Info circle.png
16.04.2019 QM methods ingredients, Hartree approximations application_pdf.png QM ingredients (1.43 MB)Info circle.png, application_pdf.png Lecture Notes (2.82 MB)Info circle.png, , application_pdf.png Hartree (812 KB)Info circle.png
18.04.2019 Hartree-Fock (HF) and post HF methods
25.04.2019 Density Functional Theory (DFT)
02.05.2019 ab initio MD, QM/MM
09.05.2019 Classical force fields and water models
16.05.2019 Simulations of macromolecules and soft matter
23.05.2019 Poisson-Boltzmann theory, charged polymers
30.05.2019 Holiday (Christi Himmelfahrt) ---
06.06.2019 Hydrodynamic methods I (Brownian and Langevin Dynamics)
13.06.2019 Holiday (Pfingsten) ---
20.06.2018 Holiday (Fronleichnam) ---
27.06.2019 Hydrodynamic methods II (DPD, Lattice-Boltzmann) (contd.)
04.07.2019 Lattice-Boltzmann (contd.)
11.07.2019 Free energy methods
18.07.2019 Coarse-graining, multiscale simulations

Tutorials

Location and Time

  • The tutorials take place in the CIP-Pool on the first floor of the ICP (Room 01.033, Allmandring 3), Thu 14:00 - 15:30; Thu 09:45-11:15 (extra tutoring time when the tutors will be partly available) (Tutors: Maofeng Dou / Kartik Jain )

Worksheets

There will be in total 6 worksheets, which will be handed out every two weeks on Wednesdays at 14:00. The deadline for the solutions will be two weeks after on Wednesdays before 13:00. The first worksheet will be uploaded on Wed. April 17th. The deadline will be Wed. May 1st.


Worksheet 1: Quantum chemistry and simple models


General Remarks

  • For the tutorials, you will get a personal account for the ICP machines.
  • All material required for the tutorials can also be found on the ICP computers in the directory /group/sm/2018.
  • For the reports, we have a nice txt.pngLaTeX template (7 KB)Info circle.png.
  • You can do the exercises in the CIP-Pool when it is not occupied by another course. The pool is accessible on all days, except weekends and late evenings.
  • If you do the exercises in the CIP-Pool, all required software and tools are available.

Hand-in-exercises

  • The worksheets are to be solved in groups of two or three people. We will not accept hand-in-exercises that only have a single name on it.
  • A written report (between 5 and 10 pages) has to be handed in for each worksheet. We recommend using LaTeX to prepare the report.
  • You have two weeks to prepare the report for each worksheet.
  • The report has to be sent to your tutor via email (Maofeng Dou or Kartik Jain).
  • Each task within the tutorial is assigned a given number of points. Each student should have 50 % of the points from each tutorial as a prerequisite for the oral examination.

What happens in a tutorial

  • The tutorials take place every week.
  • You will receive the new worksheet on the days before the tutorial.
  • In the first tutorial after you received a worksheet, the solutions of the previous worksheet will be presented (see below) and the new worksheet will be discussed.
  • In the second tutorial after you received the worksheet, there is time to work on the exercises and to ask questions for the tutor.
  • You will have to hand in the reports on Monday after the second tutorial.
  • In the third tutorial after you received the worksheet, the solutions will be discussed:
    • The tutor will ask a team to present their solution.
    • The tutor will choose one of the members of the team to present each task.
    • This means that each team member should be able to present any task.
    • At the end of the term, everybody should have presented at least once.