Simulation Methods in Physics II SS 2013

From ICPWiki
Revision as of 12:59, 6 June 2013 by Mfyta (talk | contribs) (Lecture)
Jump to: navigation, search

Overview

Type
Lecture (2 SWS) and Tutorials "Simulationsmethoden in der Praxis" (2 SWS)
Lecturer
JP. Dr. Maria Fyta, (Lecture); Dr. Jens Smiatek(Tutorials)
Course language
English
Lectures
Time: Thursdays, 11:30 - 13:00, ICP, Allmandring 3, Seminarroom 1
Tutorials
Time: Tuesdays, 08:00-10:00, ICP, Allmandring 3, CIP-Pool

The tutorials have their own title "Simulationsmethoden in der Praxis", as they can be attended independently of the lecture and are in fact part part of the Physics MSc module "Fortgeschrittene Simulationsmethoden" and not of the module that contains the lecture "Simulation Methods in Physics II".

The lecture is accompanied by hands-on-tutorials which will take place in the CIP-Pool of the ICP, Allmandring 3. They consist of practical exercises at the computer, like small programming tasks, simulations, visualization and data analysis. The tutorials build on each other, therefore continuous attendance is expected.

Scope

The course intends to give an overview about modern simulation methods used in physics today. The stress of the lecture will be to introduce different approaches to simulate a problem, hence we will not go too to deep into specific details but rather try to cover a broad range of methods. For an idea about the content look at the lecture schedule.

Prerequisites

We expect the participants to have basic knowledge in classical and statistical mechanics, thermodynamics, electrodynamics, and partial differential equations, as well as knowledge of a programming language. The knowledge of the previous course Simulation Methods I is expected.

Certificate Requirements

1. Attendance of the exercise classes
2. Obtaining 50% of the possible marks in the hand-in exercises

There will be a final grade for the Module "Simulation Methods" (this module consists of both lectures, Sim I plus Sim II) determined at the end of lecture Simulation Methods II.

The final grade will be determined in the following way: There will be an oral examination performed at (or after) the end of the course Simulation Methods II (SS 2012).

Recommended literature


Useful online resources

  • Linux cheat sheet application_pdf.pnghere (53 KB)Info circle.png.
  • Be careful when using Wikipedia as a resource. It may contain a lot of useful information, but also a lot of nonsense, because anyone can write it.

Lecture

To access lecture notes from outside the University or VPN, use the password which you obtained last semester. If you do not know it, ask the tutor or your friends in the course.

Date Subject Ressources
11.04.2012 Introduction, electronic stucture Lecture Notes (3.19 MB)Info circle.png
18.04.2012 Elements of quantum mechanics, Hartree and Hartree-Fock approximations Lecture Notes (3.22 MB)Info circle.png
25.04.2012 Density functional theory (DFT), functionals, pseudopotentials, elements of solid state physics Lecture Notes (5.51 MB)Info circle.png
30.04.2012 Time-dependent density functional theory, post-Hartree-Fock methods Lecture Notes (5.12 MB)Info circle.png
09.05.2012 Holiday (Christi Himmelfahrt)
16.05.2012 QM forces, energy minimization, CPMD, quantum Monte Carlo, QM/MM, tight-binding Lecture Notes (7.41 MB)Info circle.png
23.05.2012 Holiday (Pfingsten)
30.05.2012 Holiday (Fronleichnam)
06.06.2012 Classical force fields, explicit water models Lecture Notes 1 (3.1 MB)Info circle.png, application_pdf.pngLecture Notes 2 (2.11 MB)Info circle.png
13.06.2012 Implicit solvent models, force fields for biomolecules, MD simulations [Lecture Notes]
20.06.2012 Hydrodynamic methods: Lattice-Boltzmann, Brownian Dynamics, DPD, SRD [Lecture Notes]
27.06.2012 Coarse-grained models, Poisson-Boltzmann theory, charged polymers [Lecture Notes]
04.07.2012 Modeling solids (FEM, EAM, interatomic potentials) [Lecture Notes]
11.07.2012 Free energy methods [Lecture Notes]
18.07.2012 Multiscale simulations [Lecture Notes]

Tutorials

  • The tutorials will take place on Tuesdays between 8-10 am in the ICP CIP-Pool.
  • New worksheets are handed out every two weeks. The first worksheet will be handed out on Thu. 18.04. The following week is dedicated to working on problems related to the last worksheet. Homework in the form of a report should be sent to Jens Smiatek before the next worksheet will be handed out. The two-week cycle ends with the discussion of results of the previous worksheet and handing out a new one.

Work sheets

Examination

Depending on the module that this lecture is part of, there are differences on how to get the credits for the module:

BSc/MSc Physik, Modul "Simulationsmethoden in der Physik" (36010) and Erasmus Mundus International Master FUSION-EP
  • Obtain 50% of the possible points in the hands-in excercises of this lecture as well as for the first part of the lecture as a prerequisite for the examination (USL-V)
  • 60 min of oral examination (PL)
    • After the lecture (i.e. Summer 2013)
    • Contents: both lectures and the excercises of "Simulation Methods in Physics I"
International MSc Physics, Elective Module "Simulation Techniques in Physics II" (240918-005)
  • Obtain 50% of the possible points in the hands-in excercises of this lecture as a prerequisite for the examination
  • 30 min of oral examination (PL) about the lecture and the excercises
BSc/MSc SimTech, Modul "Simulationsmethoden in der Physik für SimTech II" (?????)
  • Obtain 50% of the possible points in the hands-in excercises of this lecture as a prerequisite for the examination (USL-V)
  • 40 min of oral examination (PL) about the lecture and the excercises
MSc Chemie, Modul "Simulationsmethoden in der Physik für Chemiker II" (?????)
  • The marks for the module are the marks obtained in the excercises (BSL)