Physik auf dem Computer SS 2017

From ICPWiki
Revision as of 11:59, 7 March 2017 by Mfyta (talk | contribs) (Created page with "== Hinweis == <!--{{Infobox| '''Die Klausuren wurden korrigiert und die Noten sind im [https://lsf.uni-stuttgart.de LSF]/[https://campus.uni-stuttgart.de CAMPUS] eingetragen....")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Hinweis

Übersicht

Typ
Vorlesung (3 SWS) und Übungen (2 SWS)
Dozenten
Dr. Jens Smiatek und JP. Dr. Maria Fyta
Tutoren
Michael Kuron
Sprache
Deutsch
Zeit und Ort
Vorlesung
jeden Mittwoch 14:00-15:30, Pfaffenwaldring 57, HS 57.04
jeden zweiten Donnerstag 15:45-17:15, Pfaffenwaldring 57, HS 57.05 (14-tägig).
erster Freitagstermin: 12. April 2017
Übung
TBA <--jeden Mittwoch 15:45-17:15-->, Allmandring 3, ICP CIP-Pool

Vorlesung

Die Folien und das Skript zur Vorlesung wird hier hochgeladen:


Klausur

Der Klausurtermin wird noch bekanntgegeben.

Übungen

Wer in der Vorlesung keinen Fragebogen ausgefüllt hat, aber gerne an der Übung teilnehmen möchte, schreibt bitte eine Email an Michael Kuron mit dem Namen, der Email-Adresse, und der Matrikelnummer.

Tutoren und Übungszeiten

Die Übungsgruppe findet nach Absprache statt. Sie wird von Johannes Zeman geleitet.

Wenn Ihr Fragen zu den Übungen habt wendet Euch an Johannes Zeman. Bei allgemeinen Fragen zu den Übungen wendet Euch an Jens Smiatek.

Übungsblätter

Die Übungsblätter sind in Zweiergruppen zu bearbeiten und gemeinsam per E-Mail an den Tutor abzugeben. Abgabefrist ist i.d.R. Dienstag, 10:00 Uhr.

Übungsblatt 0: Wiederholung Python

Da auf allen weiteren Übungsblättern Programmieraufgaben in Python zu lösen sein werden, besteht die Hausaufgabe der ersten Woche darin, die eigenen Python-Kenntnisse aufzufrischen.

Zur Wiederholung der grundlegenden Python-Syntax ist dieses IPython-Workbook durchzuarbeiten: ipynb.pngPythonTutorial.ipynb (33 KB)Info circle.png (nbviewer). Zur Wiederholung der Funktionen der NumPy-Bibliothek ist dieses IPython-Workbook durchzuarbeiten: ipynb.pngNumPyTutorial.ipynb (120 KB)Info circle.png (nbviewer). Nach dem Herunterladen kann ein IPython-Notebook mit folgendem Befehl geöffnet werden:

ipython notebook /pfad/zum/Notebook.ipynb

Nützliche Referenzen sind beispielsweise die Vorlesungsfolien aus den Computergrundlagen, die application_pdf.pngFolien der Vorlesung vom 6. April (779 KB)Info circle.png , sowie die SciPy/NumPy-Dokumentation.


Allgemeine Bemerkungen

  • Die Übungen finden im CIP-Pool am ICP (Allmandring 3, 1. Stock) statt.
  • Um zur Prüfung zugelassen zu werden, sind insgesamt 50% der Punkte aus den Übungen notwendig. Außerdem ist regelmäßig an den Übungsgruppen teilzunehmen und ein- bis zweimal eine Aufgabe an der Tafel vorzustellen.
  • Die Übungen sollen i. d. R. in Gruppen von zwei oder drei Leuten bearbeitet werden.
  • Wir gehen davon aus, dass die Übungen im CIP-Pool bearbeitet werden. Dieser ist mit Hilfe des Logins und Passworts jederzeit zugänglich (außer nachts und am Wochenende). Die Belegungszeiten des CIP-Pools können hier abgelesen werden.
  • Trotzdem werden wir versuchen, alle dafür benötigten Materialien hier auf der Homepage bereitzustellen. Wer also selbst ein Unix/Linux-Betriebssystem zu Hause installiert hat, kann die Übungen im Prinzip auch dort erledigen. Das bedeutet aber ausdrücklich nicht, dass Ihr die Übungen dann alleine macht!
  • Wer möchte, kann Linux übrigens auch auf dem eigenen Computer ausprobieren und dann auch installieren (ohne deswegen Windows löschen zu müssen). Tipps dazu gibt es weiter unten.

Documentation

Linux

Python

  • Use the existing documentation of Python itself! To get help on the command print, use
 pydoc print
  • Or use the Web browser to read it. Start
 pydoc -p 4242
and visit the page http://localhost:4242

NumPy

  • first of all, try to use
 pydoc numpy

Python auf dem eigenen Rechner

Wer die Übungsaufgaben auf dem eigenen Rechner lösen möchte, muss dafür Python samt einiger Zusatzmodule installieren. Auf den unterschiedlichen Betriebssystemen funktioniert das jeweils anders.

Debian und Ubuntu Linux

sudo apt-get update
sudo apt-get install python python-numpy python-scipy \
    python-matplotlib ipython ipython-notebook
mkdir -p ~/.config/matplotlib
echo 'backend: TkAgg' > ~/.config/matplotlib/matplotlibrc

OpenSUSE Linux

sudo zypper install python python-numpy python-scipy \
    python-matplotlib IPython
mkdir -p ~/.config/matplotlib
echo 'backend: TkAgg' > ~/.config/matplotlib/matplotlibrc

Mac OS X

Zuerst den C-Compiler installieren:

xcode-select --install
xcodebuild -license accept

Anschließend MacPorts herunterladen und installieren. Nun können die Python-Pakete installiert werden:

sudo port selfupdate
sudo port install python27 py27-numpy py27-scipy \
    py27-matplotlib py27-ipython py27-jupyter
sudo port select python python27
sudo port select ipython py27-ipython

Windows

Für Windows empfiehlt sich Anaconda Python, ein Komplettpaket, von dem alle benötigten Python-Module schon mitgebracht werden.