Difference between revisions of "Maria Fyta"

From ICPWiki
Jump to: navigation, search
(Created page with "{{Person |name=Fyta, Maria |status=Junior Prof |category=holm |phone=63935 |room=203 |email=mfyta }}")
 
Line 7: Line 7:
 
|email=mfyta
 
|email=mfyta
 
}}
 
}}
 +
 +
== Open positions ==
 +
 +
There is an opening for a PhD student working on the multiscale modeling of biologically modified materials.
 +
 +
== Research interests ==
 +
 +
Our work is based on a variety of computational tools, ranging from classical (Monte-Carlo schemes
 +
within empirical potential approaches, Molecular Dynamics), semi-empirical
 +
(parametrized tight-binding schemes), quantum mechanical
 +
(implementations of the density functional theory),
 +
and multiscale methodologies (coupled Langevin molecular-dynamics
 +
and lattice-Boltzmann method for modeling molecular
 +
motion in a fluid solvent).
 +
 +
=== Integration of biomolecules and materials ===
 +
 +
=== DNA translocation through narrow pores ===
 +
 +
=== Optoelectronic and mechanical properties of carbon nanostructures ===
 +
 +
=== Ionic solutions in water ===
 +
 +
 +
[More details will come soon...]
 +
 +
== Publications ==
 +
 +
[Selected publications]
 +
 +
M. Fyta, Structural and technical details of the Kirkwood-Buff integrals from the optimization of ionic force fields: focus on fluorides, Europ. J. Phys. E. 35, 21 (2012).
 +
 +
M. Fyta and R.R. Netz, Ionic force field optimization based on single-ion and ion-pair solvation properties: going beyond standard mixing rules, J. Chem. Phys. 136(12), 124103 (2012).
 +
 +
M.Fyta, S. Melchionna, and S. Succi,Translocation of biomolecules through solid-state nanopores: theory meets experiments, J. Polym. Sci. B, 49, 985 (2011).
 +
 +
M. Fyta, I. Kalcher, L. Vrbka, J. Dzubiella, and R.R. Netz, Force field optimization of electrolyte solutions based on their thermodynamic properties , J. Chem. Phys, 132, 024911 (2010).
 +
 +
S. Melchionna, M. Bernaschi, M. Fyta, E. Kaxiras, and S. Succi, Quantized biopolymer translocation through nanopores: departure from simple scaling, Phys. Rev. E, 79 030901(R) (2009).
 +
 +
M. Fyta, Simone Melchionna, Efthimios Kaxiras, and Sauro Succi,
 +
Multiscale Simulation of Nanobiological flows, Computing in Science and Engineering, 10 10 (2008).
 +
 +
R. L. Barnett, P. Maragakis, A. Turner, M. Fyta, and E. Kaxiras,
 +
Multiscale model of electronic behavior and localization in stretched dry DNA,
 +
J. Mater. Sci., 42 8894 (2007).
 +
 +
M.G. Fyta, S. Melchionna, E. Kaxiras, and S. Succi,
 +
Multiscale coupling of molecular dynamics and hydrodynamics: application to DNA translocation through a nanopore,
 +
Multiscale Modeling and Simulation, 5, 1156 (2006).
 +
 +
M. G. Fyta, I. N. Remediakis, P. C. Kelires, and D. A. Papaconstantopoulos,
 +
Insights into the strength and fracture mechanisms of amorphous and nanocomposite carbon,
 +
Phys. Rev. Lett. 96, 185503 (2006).
 +
 +
M. G. Fyta and P. C. Kelires,
 +
Simulations of composite carbon films with nanotube inclusions,
 +
Appl. Phys. Lett. 86, 191916 (2005),
 +
 +
M. G. Fyta, I. N. Remediakis and P. C. Kelires,
 +
Energetics and stability of nanostructured amorphous carbon,
 +
Phys. Rev. B 67, 035423 (2003).

Revision as of 16:46, 12 June 2012

Placeholder.jpg
Maria Fyta
Junior Prof
Office:203
Phone:+49 711 685-63935
Fax:+49 711 685-63658
Email:mfyta _at_ icp.uni-stuttgart.de
Address:Maria Fyta
Institute for Computational Physics
Universität Stuttgart
Allmandring 3
70569 Stuttgart
Germany

Open positions

There is an opening for a PhD student working on the multiscale modeling of biologically modified materials.

Research interests

Our work is based on a variety of computational tools, ranging from classical (Monte-Carlo schemes within empirical potential approaches, Molecular Dynamics), semi-empirical (parametrized tight-binding schemes), quantum mechanical (implementations of the density functional theory), and multiscale methodologies (coupled Langevin molecular-dynamics and lattice-Boltzmann method for modeling molecular motion in a fluid solvent).

Integration of biomolecules and materials

DNA translocation through narrow pores

Optoelectronic and mechanical properties of carbon nanostructures

Ionic solutions in water

[More details will come soon...]

Publications

[Selected publications]

M. Fyta, Structural and technical details of the Kirkwood-Buff integrals from the optimization of ionic force fields: focus on fluorides, Europ. J. Phys. E. 35, 21 (2012).

M. Fyta and R.R. Netz, Ionic force field optimization based on single-ion and ion-pair solvation properties: going beyond standard mixing rules, J. Chem. Phys. 136(12), 124103 (2012).

M.Fyta, S. Melchionna, and S. Succi,Translocation of biomolecules through solid-state nanopores: theory meets experiments, J. Polym. Sci. B, 49, 985 (2011).

M. Fyta, I. Kalcher, L. Vrbka, J. Dzubiella, and R.R. Netz, Force field optimization of electrolyte solutions based on their thermodynamic properties , J. Chem. Phys, 132, 024911 (2010).

S. Melchionna, M. Bernaschi, M. Fyta, E. Kaxiras, and S. Succi, Quantized biopolymer translocation through nanopores: departure from simple scaling, Phys. Rev. E, 79 030901(R) (2009).

M. Fyta, Simone Melchionna, Efthimios Kaxiras, and Sauro Succi, Multiscale Simulation of Nanobiological flows, Computing in Science and Engineering, 10 10 (2008).

R. L. Barnett, P. Maragakis, A. Turner, M. Fyta, and E. Kaxiras, Multiscale model of electronic behavior and localization in stretched dry DNA, J. Mater. Sci., 42 8894 (2007).

M.G. Fyta, S. Melchionna, E. Kaxiras, and S. Succi, Multiscale coupling of molecular dynamics and hydrodynamics: application to DNA translocation through a nanopore, Multiscale Modeling and Simulation, 5, 1156 (2006).

M. G. Fyta, I. N. Remediakis, P. C. Kelires, and D. A. Papaconstantopoulos, Insights into the strength and fracture mechanisms of amorphous and nanocomposite carbon, Phys. Rev. Lett. 96, 185503 (2006).

M. G. Fyta and P. C. Kelires, Simulations of composite carbon films with nanotube inclusions, Appl. Phys. Lett. 86, 191916 (2005),

M. G. Fyta, I. N. Remediakis and P. C. Kelires, Energetics and stability of nanostructured amorphous carbon, Phys. Rev. B 67, 035423 (2003).