Difference between revisions of "Ionic Liquids"

From ICPWiki
Jump to: navigation, search
 
Line 13: Line 13:
 
they can also exhibit interesting solvation or coordination
 
they can also exhibit interesting solvation or coordination
 
properties, one could potentially use them as "designer solvents".
 
properties, one could potentially use them as "designer solvents".
 
  
 
== Our Project ==
 
== Our Project ==
Line 24: Line 23:
 
medium scale density functional theory methods (plain waves and
 
medium scale density functional theory methods (plain waves and
 
Car-Parrinello methods) up to classical atomistic molecular dynamics
 
Car-Parrinello methods) up to classical atomistic molecular dynamics
simulations and possibly beyond to coarse grained models. We will
+
simulations and possibly beyond to coarse grained models. We started from the Angstrom length scale with the individual
starts from the Angstrom length scale with the individual
+
ions and ion pairs and now successively develop effective
ions and ion pairs and then successively develop effective
+
potentials and classical force fields representing accurately the small systems to be able to
potentials representing accurately the small systems to be able to
 
 
simulate progressively larger structures until length and time
 
simulate progressively larger structures until length and time
 
scales are reached which resolve most accurately the bulk properties
 
scales are reached which resolve most accurately the bulk properties
and also the solvation structure with solutes. This procedure can be
+
and also the solvation structure with solutes. This procedure is
 
applied iteratively from the quantum system to the classical one and
 
applied iteratively from the quantum system to the classical one and
 
vice versa until an accurate "modeling" description is achieved,
 
vice versa until an accurate "modeling" description is achieved,
Line 36: Line 34:
 
providing the required framework for the prediction and
 
providing the required framework for the prediction and
 
interpretation of experimental results.
 
interpretation of experimental results.
 +
 +
Our group currently focusses on classical dynamics simulations of ILs and the improvement of the underlying force fields with the help of ab-initio calculations.
 +
 +
== Current Coworkers ==
 +
 +
* PD Dr. [[Christian Holm]], Project supervisor
 +
* [[Florian Dommert]], PhD Student
 +
* Dr. [[Jochen Schmidt]], Post-Doctoral Fellow
 +
 +
== Former Coworkers==
 +
* Dr. Baofu Qiao, Former Post-Doctoral Fellow
 +
 +
== Collaborations ==
 +
We are associates of the priority program "Ionic Liquids" of the DFG ([http://www.dfg-spp1191.de/front/ DFG-SPP1191]).
 +
 +
Our multiscale project is a shared project of our group and
 +
* Dr. [http://fias.uni-frankfurt.de/~berger/index.html Robert Berger], Frankfurt Institute for Advanced Studies (post Hartree-Fock)
 +
* Dr. [http://www.mpip-mainz.mpg.de/~dellsite/ Luigi Delle Site], MPI for Polymer Research, Mainz (Density-Functional Theory calculations)
 +
 +
== Publications ==
 +
<bibentry> qiao07a</bibentry>

Revision as of 14:39, 4 January 2008

Introduction

Ionic Liquids (ILs) are basically a subclass of molten salts, which have a melting point below 100°C. ILs are known already for more than 90 years, however, only recently newly found members of this class showed promising applications in electrochemistry, analytics, technology, and engineering fluids. Many ILs are already liquid at room temperature, some even freeze only at temperatures around -90°C. Due to their salt like structure they usually exhibit a negligible vapor pressure up to very high temperatures which makes them particularly suited for "green chemistry". Since they can also exhibit interesting solvation or coordination properties, one could potentially use them as "designer solvents".

Our Project

We follow a multiscale approach capable of predicting the bulk and the molecular structure of ionic liquids and some of their micro- and macroscopic properties. Our idea is to treat selected ionic liquids within a sequential multiscale framework spanning from highly accurate ab initio-methods (post Hartree-Fock), to medium scale density functional theory methods (plain waves and Car-Parrinello methods) up to classical atomistic molecular dynamics simulations and possibly beyond to coarse grained models. We started from the Angstrom length scale with the individual ions and ion pairs and now successively develop effective potentials and classical force fields representing accurately the small systems to be able to simulate progressively larger structures until length and time scales are reached which resolve most accurately the bulk properties and also the solvation structure with solutes. This procedure is applied iteratively from the quantum system to the classical one and vice versa until an accurate "modeling" description is achieved, satisfying in a reasonable way the main scales involved and providing the required framework for the prediction and interpretation of experimental results.

Our group currently focusses on classical dynamics simulations of ILs and the improvement of the underlying force fields with the help of ab-initio calculations.

Current Coworkers

Former Coworkers

  • Dr. Baofu Qiao, Former Post-Doctoral Fellow

Collaborations

We are associates of the priority program "Ionic Liquids" of the DFG (DFG-SPP1191).

Our multiscale project is a shared project of our group and

  • Dr. Robert Berger, Frankfurt Institute for Advanced Studies (post Hartree-Fock)
  • Dr. Luigi Delle Site, MPI for Polymer Research, Mainz (Density-Functional Theory calculations)

Publications