Hauptseminar Multiscale Simulations SS 2016/Quantum transport sensing DNA

From ICPWiki
< Hauptseminar Multiscale Simulations SS 2016
Revision as of 13:45, 20 January 2016 by Mfyta (talk | contribs) (Created page with "More information will become available soon. {{Seminartopic |topic= Quantum transport simulations: sensing DNA |speaker=tba |date=tba |tutor=Maria Fyta }} == Contents =...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

More information will become available soon.

Datum
tba"tba" contains an extrinsic dash or other characters that are invalid for a date interpretation.
Thema
Quantum transport simulations: sensing DNA
Vortragender
tba
Betreuer
Maria Fyta

Contents

In this topic, the use of density functional theory method together with the non-equilibrium Greens functions approach will be presented. This coupled approach can be used for calculating the electron transport across nanosystems. The details of this approach should be discussed. At a second level, examples of quantum transport simulations which deal with sensing schemes for DNA will be presented.


Literature

  • S. Datta, Nanoscale device modeling: the Green’s function methodSuperlattices and Microstructures 28, 253 (2000).
  • [S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, England, 1995)]
  • H. He, R. H. Scheicher, R. Pandey, A. R. Rocha, S. Sanvito, A. Grigoriev,R. Ahuja, and S. P. Karna, Functionalized Nanopore-Embedded Electrodes for Rapid DNA Sequencing, J. Phys. Chem. C 112, 3456 (2008).
  • J. Prasongkit† et al, Transverse Conductance of DNA Nucleotides in a Graphene Nanogap from First Principles, Nano Lett. 11 (5), 1945 (2011).