Difference between revisions of "Anjan Prasad Gantapara"

From ICPWiki
Jump to: navigation, search
Line 14: Line 14:
  
 
== Research ==
 
== Research ==
 
+
A high precision multi-canonical Monte Carlo method is developed. This multi-canonical method is employed for the computation of exact order parameter distributions for the two dimensional Ising Model. The extraction of universal behavior from finite size functions still remains of interest. Various boundary conditions have been taken into account.The  order parameter distributions for finite lattice sizes up to 128 at temperatures above, below, and at the critical point are computed. All the results are fully converged with respect to the number of Monte Carlo steps. For critical systems the approach to the Gaussian behavior is generally slow. For large system sizes the fat tails observed
The exact order parameter distributions are computed for the two
 
dimensional Ising Model with various boundary conditions for finite
 
lattice sizes up to 256 at temperatures above, below, and at the critical
 
point. All the results are fully converged with respect to the number of
 
Monte Carlo steps. For critical systems the approach to the Gaussian
 
behavior is generally slow. For large system sizes the fat tails observed
 
 
in Ref [1] are found to appear also for temperatures approaching critical
 
in Ref [1] are found to appear also for temperatures approaching critical
 
point from below. The effect of the boundary conditions at criticality in
 
point from below. The effect of the boundary conditions at criticality in
the far tail regime are studied with high precision. Our results provide
+
the far tail regime are studied with high precision. Currently we are marching towards lattice size 256.
benchmarks for numerical and analytical studies. This study suggest
+
[1]Hilfer R, Biswal B, Mattutis H G, and Janke W Phys. Rev. E
that the critical order parameter distribution must be considered to
+
68,046123 (2003).
be unknown at present.
 

Revision as of 11:08, 4 May 2009

<setdata> name=Gantapara, Anjan Prasad title= status=PhD student phone=67606 room=204 email=Anjan.Gantapara image=DSC01212.JPG </setdata>

[[Image:{{#data:image|No_photo.png}}|right|180px]] {{#data:status}}

As Anjan Prasad Gantapara is not a member of our working group anymore, the information on this page might be outdated.



Research

A high precision multi-canonical Monte Carlo method is developed. This multi-canonical method is employed for the computation of exact order parameter distributions for the two dimensional Ising Model. The extraction of universal behavior from finite size functions still remains of interest. Various boundary conditions have been taken into account.The order parameter distributions for finite lattice sizes up to 128 at temperatures above, below, and at the critical point are computed. All the results are fully converged with respect to the number of Monte Carlo steps. For critical systems the approach to the Gaussian behavior is generally slow. For large system sizes the fat tails observed in Ref [1] are found to appear also for temperatures approaching critical point from below. The effect of the boundary conditions at criticality in the far tail regime are studied with high precision. Currently we are marching towards lattice size 256. [1]Hilfer R, Biswal B, Mattutis H G, and Janke W Phys. Rev. E 68,046123 (2003).