Difference between revisions of "Advanced Simulation Methods SS 2016"

From ICPWiki
Jump to: navigation, search
(Dates)
(Report)
 
(25 intermediate revisions by 6 users not shown)
Line 10: Line 10:
 
:ICP, Allmandring 3; Room: ICP Meeting Room
 
:ICP, Allmandring 3; Room: ICP Meeting Room
 
;Time
 
;Time
:tba.
+
:(see below)
The course will consist of three modules supervised by Prof. Dr. [[Christian Holm]], Dr. [[Jens Smiatek]], JP. Dr. [[Maria Fyta]] and will contain exercises, presentations, discussion meetings, and written reports, worked out in groups.
+
The course will consist of three modules supervised by Prof. Dr. [[Christian Holm]], Dr. [[Jens Smiatek]], JP. Dr. [[Maria Fyta]] and will contain exercises, presentations, discussion meetings, and written reports, worked out in groups. Each group will have to give a talk on the methodology and practical part for one of the modules.
  
:{{Infobox|<b> A preliminary registration for this course is mandatory. Interested students write an Email to [[Maria Fyta]]</b>}}
+
The students can work in groups. Each group should present the theory and the practical part of one of the modules. All groups should write a common short report on all modules, which they should submit to [[Maria Fyta]] no later than Friday July 15, 2016. The report does not need to be longer than 20 pages.
 +
 
 +
:{{Infobox|<b> A preliminary registration for this course is mandatory. Interested students write an Email to [[Maria Fyta]].</b>}}
  
 
== Module 1: [[Maria Fyta]], [[Frank Uhlig]], Inter-atomic interactions modeled with quantum mechanical simulations ==
 
== Module 1: [[Maria Fyta]], [[Frank Uhlig]], Inter-atomic interactions modeled with quantum mechanical simulations ==
Line 21: Line 23:
 
First meeting: Tue 05.04.2016 at 14:00 in the ICP meeting room.
 
First meeting: Tue 05.04.2016 at 14:00 in the ICP meeting room.
  
Final meeting: tba
+
Tutorials: Tue 12.04.2016 at 11:30 in the ICP CIP-Pool.
 +
 
 +
Talks: Fri 22.04.2016 at 11:30 in the ICP meeting room.
  
 
=== Description ===
 
=== Description ===
Line 36: Line 40:
  
 
This part introduces the students to the density functional theory (DFT) method. A scheme which has revolutionarized the way materials and their properties are studied. The students should focus on this method and understand how it works and which its capabilities are. A specific focus would be the different levels of approximations that can be made in this method. For this, the choice of the exchange-correlation functional mapping the interactions of a system is crucial. To this end, the discussion in this module will be directed.  The report should contain an introduction to the exchange-correlation functionals in DFT in the context of the simulations and the analysis of the simulations in Part 2.
 
This part introduces the students to the density functional theory (DFT) method. A scheme which has revolutionarized the way materials and their properties are studied. The students should focus on this method and understand how it works and which its capabilities are. A specific focus would be the different levels of approximations that can be made in this method. For this, the choice of the exchange-correlation functional mapping the interactions of a system is crucial. To this end, the discussion in this module will be directed.  The report should contain an introduction to the exchange-correlation functionals in DFT in the context of the simulations and the analysis of the simulations in Part 2.
 +
 +
* Lecture Notes {{Download| advSimMeth_SS16_notes.pdf |Lecture Notes}}
  
 
==== Literature ====
 
==== Literature ====
Line 51: Line 57:
 
==== Description ====
 
==== Description ====
  
This part is practical and involves the simulation of two different systems: (a) two stacked graphene planes and (b) a H3O radical. All simulations will be performed with the software package SIESTA [www.icmab.es/siesta/]. The students should test the use of different exchange-correlation functionals. A thorough analysis of the stability and energetics of the two system is expected.
+
This part is practical and involves the simulation of two different systems: (a) two stacked graphene planes and (b) a H3O radical. All simulations will be performed with the software package [https://wiki.fysik.dtu.dk/gpaw/ GPAW]. The students should test the use of different exchange-correlation functionals. A thorough analysis of the stability and energetics of the two system is expected. Tutorial files and brief instructions can be found online at [https://gitlab.com/fuulish/AdvancedSM.git AdvancedSM].
  
 
==== Literature ====
 
==== Literature ====
Line 67: Line 73:
 
=== Report ===
 
=== Report ===
  
Please hand in one report per group of 5 to 10 pages containing and discussing your results.
+
Please write a report of about 5 pages containing and discussing your results and hand it in together with the reports of the other modules at the end of the course (see above).
 +
<!--Please hand in one report per group of 5 to 10 pages containing and discussing your results.-->
  
== Module 2: [[Jens Smiatek]], Atomistic Simulations of Co-Solutes in Aqueous Solutions ==
+
== Module 2: [[Jens Smiatek]], [[Ewa Anna Oprzeska-Zingrebe]]: Atomistic Simulations of Co-Solutes in Aqueous Solutions ==
  
  
 
=== Dates ===
 
=== Dates ===
  
First meeting: Tue 10.05.2016 at 12:30 in the ICP meeting room.  
+
First meeting: Tue 10.05.2016 at 13:00 in the ICP meeting room.  
  
Final meeting: Tue 14.06.2016 at 12:30 in the ICP meeting room.
+
Final meeting: Tue 14.06.2016 at 13:00 in the ICP meeting room.
  
 
=== Description ===
 
=== Description ===
Line 113: Line 120:
 
* D. van der Spoel, P. J. van Maaren, P. Larsson and N. Timneanu, "Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media", J. Phys. Chem. B 110, 4393 (2006)
 
* D. van der Spoel, P. J. van Maaren, P. Larsson and N. Timneanu, "Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media", J. Phys. Chem. B 110, 4393 (2006)
 
* J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, "Development and testing of a general amber force field", J. Comp. Chem. 25, 1157 (2004)
 
* J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, "Development and testing of a general amber force field", J. Comp. Chem. 25, 1157 (2004)
 +
 +
==== Force Fields for Hydroxyectoine ====
 +
 +
* {{Download| hectoinzwittmp2.itp |itp-File for Hydroxyectoine}}
 +
* {{Download| hectoinzwittmp2.gro |gro-File for Hydroxyectoine}}
  
 
=== Report ===
 
=== Report ===
  
Please hand in one report per group of 5 to 10 pages containing and discussing your results.
+
Please write a report of about 5 pages containing and discussing your results and hand it in together with the reports of the other modules at the end of the course (see above).
 +
<!--Please hand in one report per group of 5 to 10 pages containing and discussing your results.-->
  
== Module 3: [[Christian Holm]], Electrostatics and Lattice Boltzmann ==
+
== Module 3: [[Christian Holm]], Electrostatics, Lattice Boltzmann, and Electrokinetics==
  
  
 
=== Dates ===
 
=== Dates ===
  
First meeting: 13.06.2016, 13:30
+
First meeting: 13.06.2016, 13:00
  
 
Final meeting: 11.07.2016, 13:30
 
Final meeting: 11.07.2016, 13:30
Line 130: Line 143:
  
 
This module focuses on charged matter with electrostatic and hydrodynamic interactions. It should be taken in groups of three people.
 
This module focuses on charged matter with electrostatic and hydrodynamic interactions. It should be taken in groups of three people.
It consists of simulations, theory, a presentation and a short report on the simulation results. You only have to give one common presentation
+
It consists of one lecture on electrostatic algorithms, simulations, theory, a presentation and a short report on the simulation results. You only have to give one common presentation
and hand in one report per group. It consists of three parts.
+
and hand in one report. The Module 3 consists of three parts:
  
 
=== Contact ===
 
=== Contact ===
Line 141: Line 154:
 
This part is about the theory of electrostatic algorithms for molecular dynamics simulations.
 
This part is about the theory of electrostatic algorithms for molecular dynamics simulations.
 
It is concerned with state of the art algorithms beyond the Ewald sum, especially mesh Ewald
 
It is concerned with state of the art algorithms beyond the Ewald sum, especially mesh Ewald
methods. To this end the students should read the referenced literature and prepare a 20 minutes
+
methods. To this end the students should read the referenced literature. [[Christian Holm]] will give an hour long lecture. Afterwards we will discuss the content and try to resolve open questions. The presentation should foster the students understanding of the P3M method as well
presentation. Hold the presentation with [[Christian Holm]] and discuss the content and open questions
+
as give them an overview of its performance compared to other modern electrostatics methods.
with him. The presentation should contain the students understanding of the P3M method as well
 
as a discussion of its performance compared to other modern electrostatics methods.
 
  
 
==== Literature ====
 
==== Literature ====
 +
:* A. Arnold.<br />'''"Coulomb interactions: P3M, MMMxD, ELC and ICC∗".'''<br />''Institute for Computational Physics, Universitat Stuttgart,'' '''2012'''.<br />[[Media:Slides-electrostatics.pdf|[PDF]]] (1.41 MB)
 
<bibentry>deserno98a,arnold13b,arnold05a</bibentry>
 
<bibentry>deserno98a,arnold13b,arnold05a</bibentry>
  
Line 166: Line 178:
 
the simulation.
 
the simulation.
  
==== Literature ====
+
==== Instructions and Literature ====
 +
General part and parts 4 & 6 of [[Media:04-lattice_boltzmann.pdf]]
 +
 
 
Georg Rempfer, {{Download|BSc_thesis_rempfer.pdf|"Lattice-Boltzmann Simulations in Complex Geometries"}}, 2010, Institute for Computational Physics, Stuttgart
 
Georg Rempfer, {{Download|BSc_thesis_rempfer.pdf|"Lattice-Boltzmann Simulations in Complex Geometries"}}, 2010, Institute for Computational Physics, Stuttgart
 
<bibentry>grass09c</bibentry>
 
<bibentry>grass09c</bibentry>
Line 178: Line 192:
 
experimental results (see literature).
 
experimental results (see literature).
  
==== Literature ====
+
==== Instructions and Literatur ====
 +
General part and part 5 of [[Media:04-lattice_boltzmann.pdf]]
 +
 
 
<bibentry>grass08a, grass09c</bibentry>
 
<bibentry>grass08a, grass09c</bibentry>
  
 
=== Report ===
 
=== Report ===
Please write together one report of 5 to 10 pages containing and discussing your simulation results from part 2 and 3.
+
 
 +
At the final meeting day of this module, one group will give a presentation about the learned and performed work. In addition, they write a report of about 5 pages containing and discussing the obtained results and hand it in together with the reports of the other modules at the end of the course (see above).
 +
 
 +
The final report is due electronically Friday night, 22.07.2016, 24:00
 +
 
 +
 
 +
 
 +
<!--Please write together one report of 5 to 10 pages containing and discussing your simulation results from part 2 and 3.-->

Latest revision as of 14:34, 11 July 2016

Overview

Type
Lecture and Tutorials (2 SWS in total)
Lecturer
Prof. Dr. Christian Holm, Dr. Jens Smiatek, JP. Dr. Maria Fyta
Course language
English or German
Location
ICP, Allmandring 3; Room: ICP Meeting Room
Time
(see below)

The course will consist of three modules supervised by Prof. Dr. Christian Holm, Dr. Jens Smiatek, JP. Dr. Maria Fyta and will contain exercises, presentations, discussion meetings, and written reports, worked out in groups. Each group will have to give a talk on the methodology and practical part for one of the modules.

The students can work in groups. Each group should present the theory and the practical part of one of the modules. All groups should write a common short report on all modules, which they should submit to Maria Fyta no later than Friday July 15, 2016. The report does not need to be longer than 20 pages.

Module 1: Maria Fyta, Frank Uhlig, Inter-atomic interactions modeled with quantum mechanical simulations

Dates

First meeting: Tue 05.04.2016 at 14:00 in the ICP meeting room.

Tutorials: Tue 12.04.2016 at 11:30 in the ICP CIP-Pool.

Talks: Fri 22.04.2016 at 11:30 in the ICP meeting room.

Description

This module focuses on the influence of theusing quantum mechanical simulations. The quantum mechanical applications which will be applied in this module are based on density functional theory (DFT). This method allows the investigation of the electronic properties of a system. An understanding of the method, an analysis of the results from the simulations as well as an oral and written presentation is the main goal of this module.

Contact

If you have any questions regarding the organization or content of this module please do not hesitate to contact Maria Fyta. For practical guidance regarding the simulations Frank Uhlig.

Part 1: Density functional theory and exchange-correlation functionals

Description

This part introduces the students to the density functional theory (DFT) method. A scheme which has revolutionarized the way materials and their properties are studied. The students should focus on this method and understand how it works and which its capabilities are. A specific focus would be the different levels of approximations that can be made in this method. For this, the choice of the exchange-correlation functional mapping the interactions of a system is crucial. To this end, the discussion in this module will be directed. The report should contain an introduction to the exchange-correlation functionals in DFT in the context of the simulations and the analysis of the simulations in Part 2.

Literature

  • A bird's-eye view of density-functional theory, Klaus Capelle, arXiv:cond-mat/0211443 (2002).
  • Self-Consistent Equations Including Exchange and Correlation Effects, W. Kohn and L.J. Sham, , Phys. Rev. (140), A1133 (1965).
  • Understanding and Reducing Errors in Density Functional Calculations, Min-Cheol Kim, Eunji Sim, and Kieron Burke, Phys. Rev. Lett. 111, 073003 (2013).
  • Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory, J Klimeš, A Michaelides, J. Chem. Phys. 137, 120901 (2012).
  • An application of the van der Waals density functional: Hydrogen bonding and stacking interactions between nucleobases, V.R. Cooper, T. Thonhauser, and D.C. Langreth, J. Chem. Phys. 128, 204102 (2008).
  • On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters: Benchmarks approaching the complete basis set limit, B. Santra, A. Michaelides, and M. Scheffler, J. Chem. Phys. 127, 184104 (2007).
  • On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level, I. Dąbkowska, P. Jurečka, and P. Hobza, J. Chem. Phys. 122, 204322 (2005).

Part 2: Stability and energetics of graphene layers and H30 radicals

Description

This part is practical and involves the simulation of two different systems: (a) two stacked graphene planes and (b) a H3O radical. All simulations will be performed with the software package GPAW. The students should test the use of different exchange-correlation functionals. A thorough analysis of the stability and energetics of the two system is expected. Tutorial files and brief instructions can be found online at AdvancedSM.

Literature

  • Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite

Michele Lazzeri, Claudio Attaccalite, Ludger Wirtz, and Francesco Mauri Phys. Rev. B 78, 081406(R) (2008).

  • From a localized H3O radical to a delocalized H3O+⋯e− solvent-separated pair by sequential hydration, Frank Uhlig, Ondrej Marsalek, and Pavel Jungwirth, Phys. Chem. Chem. Phys., 2011,13, 14003-14009
  • Electronic properties of nano-graphene sheets calculated using quantum chemical DFT
  • Sangam Banerjeea, , Dhananjay Bhattacharyya, Computational Materials Science, 44, 41–45 (2008).
  • Benchmark calculations of water–acene interaction energies: Extrapolation to the water–graphene limit and assessment of dispersion–corrected DFT methods, Glen R. Jenness , Ozan Karalti and Kenneth D. Jordan, Phys. Chem. Chem. Phys., 12, 6375-6381 (2010).
  • Dependence of band structures on stacking and field in layered graphene, Masato Aoki, , Hiroshi Amawashi, Solid State Communications 142, 123–127 (2007).
  • Graphite Interplanar Bonding: Electronic Delocalization and van der Waals Interaction, J.-C. Charlier, X. Gonze and J.-P. Michenaud, Europhysics Letters), 28 , 403 (1994).

Report

Please write a report of about 5 pages containing and discussing your results and hand it in together with the reports of the other modules at the end of the course (see above).

Module 2: Jens Smiatek, Ewa Anna Oprzeska-Zingrebe: Atomistic Simulations of Co-Solutes in Aqueous Solutions

Dates

First meeting: Tue 10.05.2016 at 13:00 in the ICP meeting room.

Final meeting: Tue 14.06.2016 at 13:00 in the ICP meeting room.

Description

This module focuses on atomistic Molecular Dynamics simulations and the study of biological co-solutes like urea, ectoine or hydroxyectoine and their influence on aqueous solutions. Biological co-solutes, often also called osmolytes are omnipresent in biological cells. A main function of these small-weight organic molecules is given by the protection of protein structures under harsh environmental conditions (protein stabilizers) or the denaturation of proteins (protein denaturants). The underlying mechanism leading to these effects is still unknown. It has been often discussed that osmolytes have a significant impact on the aqueous solution. The module consists of model development, simulation, analysis and oral and written presentation part.

Contact

If you have any questions regarding the organization or content of this module please do not hesitate to contact Jens Smiatek.

Part 1: Osmolytes and Kirkwood-Buff Theory

Description

This part introduces the students to the field of osmolyte research. An important theory to study solvation and binding behavior is given by the Kirkwood-Buff theory which can be well applied to computer simulations. The students should study the literature given below and present their findings. The presentation should at a minimum contain an introduction to Kirkwood-Buff theory in the context of the simulations.

Literature

  • D. R. Canchi and A. E. Garcia, "Co-solvent effects on protein stability", Ann. Rev. Phys. Chem. 64. 273 (2013)
  • K. D. Collins, "Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process", Methods 34, 300-311 (2004)
  • V. Pierce, M. Kang, M. Aburi, S. Weerasinghe and P. E. Smith, "Recent applications of Kirkwood–Buff theory to biological systems", Cell Biochem. Biophys. 50, 1 (2008)
  • J. Smiatek, "Osmolyte effects: Impact on the aqueous solution around charged and neutral spheres", J. Phys. Chem. B 118, 771 (2014)

Part 2: Model Development and Simulations

Description

This part is practical. The simulations will be conducted by the software package [1]. The students will develop Generalized Amber Force Fields (GAFF) [2] for the osmolytes which will be used for the study of solvent properties like the thermodynamics of hydrogen bonding In comparison to pure water, the students will analyze several water parameters and elucidate the differences in presence of osmolytes and their concentration dependent behavior. The Kirkwood-Buff theory will be used to calculate derivatives of the activity coefficients as well as the osmolyte binding behavior.

Literature

  • D. van der Spoel, P. J. van Maaren, P. Larsson and N. Timneanu, "Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media", J. Phys. Chem. B 110, 4393 (2006)
  • J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, "Development and testing of a general amber force field", J. Comp. Chem. 25, 1157 (2004)

Force Fields for Hydroxyectoine

Report

Please write a report of about 5 pages containing and discussing your results and hand it in together with the reports of the other modules at the end of the course (see above).

Module 3: Christian Holm, Electrostatics, Lattice Boltzmann, and Electrokinetics

Dates

First meeting: 13.06.2016, 13:00

Final meeting: 11.07.2016, 13:30

Description

This module focuses on charged matter with electrostatic and hydrodynamic interactions. It should be taken in groups of three people. It consists of one lecture on electrostatic algorithms, simulations, theory, a presentation and a short report on the simulation results. You only have to give one common presentation and hand in one report. The Module 3 consists of three parts:

Contact

If you have any questions regarding the organisation or content of this module please do not hesitate to contact Christian Holm. For questions regarding the practical part of the module and technical help contact Gary Davies.

Part 1: Electrostatics

Description

This part is about the theory of electrostatic algorithms for molecular dynamics simulations. It is concerned with state of the art algorithms beyond the Ewald sum, especially mesh Ewald methods. To this end the students should read the referenced literature. Christian Holm will give an hour long lecture. Afterwards we will discuss the content and try to resolve open questions. The presentation should foster the students understanding of the P3M method as well as give them an overview of its performance compared to other modern electrostatics methods.

Literature

  • A. Arnold.
    "Coulomb interactions: P3M, MMMxD, ELC and ICC∗".
    Institute for Computational Physics, Universitat Stuttgart, 2012.
    [PDF] (1.41 MB)


Part 2: Slit Pore

Description

Electroosmotic flow in a slit pore

This part is practical. It is concerned with the movement of ions in an charged slit pore. It is similar to the systems that are discussed in the Bachelors thesis of Georg Rempfer which is recommended reading. A slit pore consists of two infinite charge walls as shown in the figure to the right. In this exercise you should simulate such a system with ESPResSo. You are supposed to use a Lattice Boltzmann fluid coupled to explicit ions which are represented by charge Week-Chandler-Anderson spheres. In addition to the charge on the walls, the ions are also subject to an external electrical field parallel to the walls. Electrostatics should be handled by the P3M algorithm. A set of realistic parameters and an more in detail description of the system can be found in the thesis. You should measure the flow profile of the fluid and the density and velocity profiles of the ions. The case of the slit pore can be solved analytically either in the case of only counter ions (the so called salt free case) or in the high salt limit (Debye-Hueckel-Limit). Calculate the ion profiles in one or both of these cases and compare the results with the simulation.

Instructions and Literature

General part and parts 4 & 6 of Media:04-lattice_boltzmann.pdf

Georg Rempfer, application_pdf.png"Lattice-Boltzmann Simulations in Complex Geometries" (1.36 MB)Info circle.png, 2010, Institute for Computational Physics, Stuttgart


Part 3: Electrophoresis of Polyelectrolytes

Description

In this part you simulate the movement of a charged polymer under the influence of an external electrical field and hydrodynamic interactions. Set up a system consisting of a charge polymer, ions with the opposite charge to make the system neutral and an Lattice Boltzmann fluid coupled the the ions and polymer. Apply an external field and measure the center of mass velocity of the polymer as a function of the length of the polymer for polymers of one to 20 monomers. Make sure the system is in equilibrium before you start the sampling. Compare your result to theory and experimental results (see literature).

Instructions and Literatur

General part and part 5 of Media:04-lattice_boltzmann.pdf


Report

At the final meeting day of this module, one group will give a presentation about the learned and performed work. In addition, they write a report of about 5 pages containing and discussing the obtained results and hand it in together with the reports of the other modules at the end of the course (see above).

The final report is due electronically Friday night, 22.07.2016, 24:00