
STATISTICAL MECHANICS

PD Dr. Christian Holm

PART 5-6  Some special topics, Thermal Radiation, and 
Plank distribution



Equipartition theorem

• Let Xi be Pi or ri 

• Generalized equipartition theorem



Special case:

• For every quadratic degree of freedom Xi 
in the partition function, with an energy 
constitution

• We have



• “one half kBT for every quadratic degree of 
freedom”

• Therefore ideal gas: 

• 3N-- quadratic degree of freedom



Additive Hamiltonian

• If the Hamiltonian of a system is a sum of 
independent terms, the partition function is 
a product of independent terms, and thus 
the free energy is again a sum of 
independent terms.

• We used that for the ideal gas.

• Other example:  Particle with translational, 
rotational, and vibrational degree of 
freedom





Partition function in generalized 
coordinates

• The integrals will contain the Jacobian 
for the transformation in generalized 
coordinates. We are not going to look 
into this very much. Let’s just make one 
example.

• Dipole in electric field



Dipole in electric field
• The energy is 

• The rotational partition function is then 
given by

• Explain why are different types of 
coordinates are useful.

• Jacobian from spherical coordinates, 
etc ...



• Substitute

4

(not really necessary to do 
the change of variable)



• Via parameter differentiation, we can now 
work out the average component of D in 
the direction of the field:



Langevin function
• Then we define

• Then we have:

• For small arguments we have             , 
hence for small electric fields we have 



THERMAL RADIATION AND 
PLANK DISTRIBUTION 



PLANK DISTRIBUTION FUNCTION

• The Plank distribution function is the first application of thermal 
Physics.

• It describes black body radiation and also thermal energy spectrum 
of lattice vibrations.

The energy states of quantum harmonic oscillator is given by
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Where       is the frequency of radiation and s is zero or any positive                 
integer.

We omit the zero point energy 
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The partition function is then given by

This sum is of the form         

with 
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Which is geometric series with    smaller than 1, thusx



Now let’s calculate      (average excitation state).

The probability that the system is in the state     of energy          is given

by the Boltzmann factor:
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Then we have,
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Thus,

This is the Planck distribution function for the thermal average 

number of photons.

or



Plank distribution as a 

function of the reduced 

temperature .ω
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PLANKS LAW AND STEFAN-BOLTZMANN 
LAW

• The thermal average energy in the mode is 
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For high temperature limit (the classical limit):

Then we have the approximation 

And the classical average energy is 
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Now we want to find out the radiation modes confined with in a 

perfectly conducting cavity in the form of a cube of edge L , then there is a set 

of modes of the form

The field must be divergence free:

   (ii)
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The modes have to satisfy the wave equation
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When we insert (i) into (ii)

Which implies that the electromagnetic field in the cavity is transversely 

polarized.
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The frequencies have to satisfy certain conditions.



The total energy in the cavity is 
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This is known as Stefan-Boltzmann law of radiation.



Let us write     with the help of 

               energy per unit volume per unit frequency range
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This result is known as Planck radiation law.
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Plot of x3/(ex - 1) 

with x =ωħ/τ. This 

function is involved 

in the Plank 

radiation law for the 

spectral density u. 

The temperature of 

a black body may 

be found from the 

frequency max at 

which the radiant 

energy density is a 

maximum, per unit 

frequency range.
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The entropy of the thermal photons at constant volume is 

Then from

And on integration 
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