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Equipartition theorem

* Let Xi be Piorri
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* Generalized equipartition theorem



Special case:

* For every quadratic degree of freedom Xi
in the partition function, with an energy
constitution

E = AX?

* We have
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* “one half keT for every quadratic degree of
freedom”

* Therefore ideal gas:
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* 3N-- quadratic degree of freedom



Additive Hamiltonian

* If the Hamiltonian of a system is a sum of
iIndependent terms, the partition function is
a product of independent terms, and thus
the free energy is again a sum of
independent terms.

* We used that for the ideal gas.

* Other example: Particle with translational,
rotational, and vibrational degree of
freedom
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Partition function in generalized
coordinates

* The integrals will contain the Jacobian
for the transformation in generalized
coordinates. We are not going to look
into this very much. Let’s just make one
example.

* Dipole in electric field



Dipole in electric field

* The enerav is
H = —D&= —Decosd
* The rotational partition function is then
given by
Z = | dp | dosing el
S A [

* Explain why are different types of
coordinates are useful.

* Jacobian from spherical coordinates,
etc ...



— Y _ ey (not really necessary to do
L cost) = dz sinfdy the change of variable)

* Substitute
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* Via parameter differentiation, we can now
work out the average component of D in
the direction of the field:
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Langevin function
* Then we define
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* Then we have:
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* For small arguments we have (=)~ ;= |
hence for small electric fields we have
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THERMAL RADIATION AND
PLANK DISTRIBUTION




PLANK DISTRIBUTION FUNCTION

* The Plank distribution function is the first application of thermal
Physics.

* |t describes black body radiation and also thermal energy spectrum
of lattice vibrations.

The energy states of quantum harmonic oscillator is given by

£ =sl|w

Where w = B7the frequency of radiation and s is zero or any positive
integer.

We omit the zero point energy% [ew.



The partition function is then given by
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This sum is of the form sz

with x =exp(™ DC% ).
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(A mode of radiation can only be
exited in units of [ (V).



Which is geometric series with X smaller than 1, thus
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Which implies the partition function
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Now let’s calculate L$[ (average excitation state).
The probability that the system is in the state s of energy s[]w is given

by the Boltzmann factor:

exp(—s[w/T)

P(s) = ~

The thermal average value of § is

K= iSP(S) . i s eXP(‘ZSD“’/ D)

Chose y = DC‘/,



Then we have,

 sexp(-) == 5 exp(-)
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Thus,

= exp(—y) |
1 —exp(—y)
or
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exp((Jw/'r) -1

This is the Planck distribution function for the thermal average

number of photons.



Plank distribution as a
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PLANKS LAW AND STEFAN-BOLTZMANN
LAW

* The thermal average energy in the mode is

 w
R @ -1

For high temperature limit (the classical limit): T >> DOJ

Then we have the approximation eXp(Da)) =1+ D%

And the classical average energy is |_£ ~ T




Now we want to find out the radiation modes confined with in a
perfectly conducting cavity in the form of a cube of edge L, then there is a set

of modes of the form

E =E, sinarcos(n 7x/L)sin(n, 7y /L)sin(n 7z/L)
E,=E ,sinarsin(n, 7%/L)cos(n, 7y /L)sin(n, e /L)
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E. =E_  sinaxcos(n 7&/L)sin(n,7p /L) cos(n e/ L)

The field must be divergence free:
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When we insert (i) into (ii)
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X z
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Which implies that the electromagnetic field in the cavity is transversely
polarized.

The modes have to satisfy the wave equation
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Let n” =n, +tn, +n;

1w, :”7%.

The frequencies have to satisfy certain conditions.



The total energy in the cavity is

us YO=Yy e,
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sum over triplet of
positive integers

Replace sum by integral over dn_dn_dn
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This is known as Stefan-Boltzmann law of radiation.
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Let us write (O with the help of

u,6: energyper unit volume per unit frequency range (w, = ”7%)
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This result is known as Planck radiation law.
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The entropy of the thermal photons at constant volume is

—dU
do s
Then from
do = 4y r°dr
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And on integration




