
Simulation Methods in Physics I WS 2018/2019

Worksheet 1: Integrators
Kartik Jain Rudolf Weeber

October 25, 2018
Institute for Computational Physics, University of Stuttgart

Contents

1 General Remarks 1

2 Cannonball 2
2.1 Simulating a cannonball . 2
2.2 Influence of friction and wind . 4

3 Solar system 6
3.1 Simulating the solar system with the Euler scheme 6
3.2 Integrators . 8
3.3 Long-term stability . 10

1 General Remarks

• Deadline for the report is Monday, November 12, 2018, noon

• On this worksheet, you can achieve a maximum of 20 points.

• The report should be written as though it would be read by a fellow student who
listens to the lecture, but does not do the tutorials.

• To hand in your report, send it to your tutor via email

– Rudolf (weeber@icp.uni-stuttgart.de)

– Kartik (kjain@icp.uni-stuttgart.de)

• Please attach the report to the email. For the report itself, please use the PDF
format (we will not accept MS Word doc/docx files!). Include graphs and images
into the report.

1

• If the task is to write a program, please attach the source code of the program so
that we can test it ourselves.

• The report should be 5–10 pages long. We recommend using LATEX. A good
template for a report is available on the course website at https://www.icp.
uni-stuttgart.de/~icp/Simulation_Methods_in_Physics_I_WS_2018/2019#LaTeX.

• The worksheets are to be solved in groups of two or three people. We will not
accept hand-in exercises that only have a single name on it.

2 Cannonball

2.1 Simulating a cannonball

In this exercise, you will simulate the trajectory of a cannonball in 2D until it hits the
ground.

At time t = 0, the cannonball (mass m = 2.0 kg) has a position of x(0) = 0 and a

velocity of v(0) =
(

50
50

)
m
s .

To simulate the cannonball, you will use the simple Euler scheme to propagate the
position x(t) and velocity v(t) at time t to the time t+ ∆t (∆t = 0.1 s):

x(t+ ∆t) = x(t) + v(t)∆t (1)

v(t+ ∆t) = v(t) + F(t)
m

∆t (2)

The force acting on the cannonball is gravity F(t) =
(

0
−mg

)
, where g = 9.81 m

s2 is the

acceleration due to gravity.

The Euler scheme can be derived from a first order Taylor expansion of the position and
velocity in time:

x(t+ ∆t) = x(t) + ∂x(t)
∂t

∆t+O(∆t2) (3)

v(t+ ∆t) = v(t) + ∂v(t)
∂t

∆t+O(∆t2) (4)

Task (3 points)
Write a Python program that simulates the cannonball until it hits the ground
({x}1 ≤ 0) and plot the trajectory.

2

https://www.icp.uni-stuttgart.de/~icp/Simulation_Methods_in_Physics_I_WS_2018/2019#LaTeX
https://www.icp.uni-stuttgart.de/~icp/Simulation_Methods_in_Physics_I_WS_2018/2019#LaTeX

Hints on preparing the report

• Whenever you are asked to write a program, hand in the program source code
together with the report. In the report, you can put excerpts of the central parts
of the code.

• When a program should plot something, you should include the plot into the report.

• Explain what you see in the plot!

Hints for this task

• For those of you that don’t know Python (yet), you can ask your tutor to give you
a template for the program, where only the central parts are missing.

Note that we will not give you a program file, but an image or a print-out, so that
you will have to type the program into a text editor yourself. While we understand
that this might sound annoying, it will help you to learn Python more quickly.

• The program you start writing in this task will be successively extended in the
course of this worksheet. Therefore it pays off to invest some time to write this
program cleanly!

• Throughout the program, you will use NumPy for numerics and Matplotlib for
plotting, therefore import them at the beginning:

from numpy import *
from matplotlib.pyplot import *

• Model the position and velocity of the cannonball as 2d NumPy arrays:
x=array ([0 .0, 0.0])

• Implement a function compute_forces(x) that returns the force (as a 2d NumPy
array) acting on the cannonball at position x.

• Implement a function step_euler(x, v, dt) that performs a single time step dt
of the Euler scheme for position x and velocity v. The function returns the new
position x and velocity v.

• Beware that when you implement the euler step, you should first update the posi-
tion and then the velocity. If you do it the other way round, you have implemented
the so-called symplectic Euler algorithm, which will be discussed later.

• Remember that NumPy can do elementwise vector operations, so that in many
cases there is no need to loop over array elements. Furthermore, these elementwise
operations are significantly faster than the loops. For example, assuming that a and
b are NumPy arrays of the same shape, the following expressions are equivalent:

3

for i in range (N): a[i] += b[i]
is the same as
a += b

• In the main program, implement a loop that calls the function step_euler() and
stores the new position in the trajectory until the cannonball hits the ground.

• Store the positions at different times in the trajectory by appending them to a list
of values

init the trajectory
traj = []
append a new value of x to the trajectory
traj.append (x.copy ())

Note that when x is a NumPy array, it is necessary to use x.copy() so that the
list stores the values, not a reference to the array. If x is a basic type (int, float,
string), the call to copy() does not work.

• When the loop ends, make the trajectory a NumPy array and then plot the tra-
jectory.
trans f o rm th e l i s t i n t o a NumPy a r r a y , which makes i t e a s i e r
to p l o t
traj = array (traj)
F i n a l l y , p l o t t h e t r a j e c t o r y
plot(traj[:,0], traj[:,1], ’-’)
and show t h e graph
show ()

2.2 Influence of friction and wind

Now we will add the effect of aerodynamic friction and wind on the cannonball. Friction
is a non-conservative force of the form Ffric(v) = −γ(v − v0). In our case, we assume
that the friction coefficient is γ = 0.1 and that the wind blows parallel to the ground

with a wind speed vw (v0 =
(
vw

0

)
m
s).

4

Task (3 points)
• Extend the program from the previous task to include the effects of aero-
dynamic friction.

• Create a plot that compares the following three trajectories:
– trajectory without friction
– trajectory with friction but without wind (vw = 0)
– trajectory with friction and with strong wind (vw = −50)

• Create a plot with trajectories at various wind speeds vw. In one of the
trajectories, the ball shall hit the ground close to the initial position.
Roughly what wind speed vw is needed for this to happen?

Hints

• Extend the function compute_forces(x) so that it also takes the velocity v as an
argument and add the friction force.

• Wrap the main loop into a function so that you can create several trajectories at
different values of γ and vw in a single program.

• The constants γ and vw that are needed in the functions compute_forces() can
either be modeled by global variables (use the keyword global), or by extending
the functions compute_forces() and step_euler() by corresponding arguments.

• You can add legends to the plots like this:
make a plot with label "f(x)"
plot(x, y, label= "f(x)")
make the labels visible
legend ()
show the graph
show ()

5

3 Solar system

The goal of this exercise is to simulate a part of the solar system (Sun, Venus, Earth,
the Moon, Mars, and Jupiter) in 2d, and to test the behavior of different integrators.

In contrast to the previous task, you will now have to simulate several “particles” (in
this case planets and the sun, in the previous case a cannonball) that interact while
there is no constant or frictional force. In the following, xi denotes the position of the
ith “particle” (likewise, the velocity vi and acceleration ai).

The behavior of the solar system is governed by the gravitational force between any two
“particles”:

Fij = −Gmimj
rij

|rij |3
(5)

where rij = xi − xj is the distance between particle i and j, G is the gravitational
constant, and mi is the mass of particle i. The total force on any single particle is:

Fi =
N∑

j=0
i 6=j

Fij (6)

3.1 Simulating the solar system with the Euler scheme

The file solar_system.pkl.gz, which can be downloaded from the lecture home page,
contains the names of the “particles”, the initial positions, velocities, masses and the
gravitational constant of a part of the solar system. The lengths are given in astronomical
units AU (i.e. the distance between earth and sun), the time in years, and the mass in
units of the earth’s mass.

Task (4 points)
• Make a copy of the program from the cannonball exercise and modify it
to yield a program that simulates the solar system.
• Simulate the solar system for one year with a time step of ∆t = 0.0001.
• Create a plot that shows the trajectories of the different “particles”.
• Perform the simulation for different time steps ∆t ∈ {0.0001, 0.001} and
plot the trajectory of the moon (particle number 2) in the rest frame of
the earth (particle number 1). Are the trajectories satisfactory?
• Modern simulations handle up to a few billion particles. Assume that you
would have to do a simulation with a large number of particles. What
part of the code would use the most computing time?

6

Hints

• The file solar_system.pkl.gz can be read as follows:
import pickle, gzip
load initial positions and masses from file
datafile = gzip.open (’ solar_system.pkl.gz ’)
name, x_init, v_init, m, g = pickle.load (datafile)
datafile.close ()

This code snippet uses the Python module pickle that can be used to write almost
any Python object to a file and read it from there, as well as the module gzip that
can be used to open and write a compressed file the same way as an ordinary
Python file.

Afterwards, name is a list of names of the planets that can be used in a plot to
generate labels, x_init and v_init are the initial positions and velocities, m are the
masses and g is the gravitational constant.

• As there are 6 “particles” now, the position vector x and the velocity vector v are
now (2× 6)-arrays, and the mass m is an array with 6 elements.

• The function you need to modify the most is the function compute_forces(x), which
is now required to compute the gravitational forces according to equation (6).

• Here, you might actually have to write a loop over the elements of the array. To
be able to do that, it is helpful to know how to access the shape of the array:

create a 2 x2-array
a = array ([[1 ,2],[3,4]])
determine the shape of the array
N, M = a.shape
sum all elements of the array
sum = 0.0
for i in range (N):

for j in range (M):
sum += a[i,j]

• When computing the forces, keep in mind Newton’s third law, i.e. when particle
j acts on particle i with the force Fij , particle i acts on particle j with the force
−Fij .

• If you wrote step_euler() using NumPy vector operations, it should not be nec-
essary to modify the function.

7

3.2 Integrators

In the previous exercises, you have used the Euler scheme (i.e. a simple mathematical
method to solve a initial value problem) to solve Newton’s equations of motion. It is
the simplest integrator one could think of. However, the errors of the scheme are pretty
large, and also the algorithm is not symplectic.

Symplectic Euler algorithm

The simplest symplectic integrator is the symplectic Euler algorithm:

v(t+ ∆t) = v(t) + a(t)∆t (7)
x(t+ ∆t) = x(t) + v(t+ ∆t)∆t (8)

where x(t) are the positions and a(t) =
(

F(t)
m

)
is the acceleration at time t. Compare

the algorithm to the simple Euler scheme of equations (1) and (2).

Verlet algorithm

Another symplectic integrator is the Verlet algorithm, which has been derived in the
lecture:

x(t+ ∆t) = 2 x(t)− x(t−∆t) + a(t)∆t2 +O
(
∆t4

)
(9)

Velocity Verlet algorithm

An alternative to the Verlet algorithm is the Velocity Verlet algorithm:

x(t+ ∆t) = x(t) + v(t)∆t+ a(t)
2 ∆t2 +O

(
∆t4

)
(10)

v(t+ ∆t) = v(t) + a(t) + a(t+ ∆t)
2 ∆t+O

(
∆t4

)
. (11)

8

Task (3 points)
• Derive the Velocity Verlet algorithm. To derive the position update, use a
Taylor expansion of x(t+ ∆t) truncated after second order. To derive the
velocity update, Taylor-expand v(t+∆t) up to the second order. To obtain
an expression for ∂2v(t)/∂t2, use a Taylor expansion for ∂v(t + ∆t)/∂t
truncated after the first order.

• Rearranging the equations of the Velocity Verlet algorithm, show that it is
equivalent to the standard Verlet algorithm. First express x(t+∆t) using
x, v and a at (t+ ∆t). in Equation (10). Then rearrange Equation (10)
to express x(t). Add the two equations and then group velocity terms
together. Put all velocity terms on one side of equation (11) and use
them to plug them into your previous equation.

Implementation

Even if you know the equations of the algorithms, this does not mean that it is immedi-
ately obvious how to implement them correctly and efficiently and how to use them in
practice.

For example, in the case of the Euler scheme (equations (1) and (2)), it is very sim-
ple to accidentally implement the symplectic Euler scheme instead. The following is
pseudocode for a step of the Euler scheme:

1. x← x + v∆t

2. v← v + a∆t

If you simply exchange the order of operations, this becomes the symplectic Euler algo-
rithm.

Another example for an algorithm that is tricky to use in a simulation is the Verlet
algorithm.

Task (1 point)
Study equation (9). Why is it difficult to implement a simulation based on this
equation in practice? What is missing?

Therefore, the Velocity Verlet algorithm is more commonly used in simulations. Un-
fortunately, implementing equations (10) and (11) has its pitfalls, too. Note that the
algorithm requires both a(t) and a(t+ ∆t) in equation (11). As computing a(t) requires
to compute the forces F(t), this would make it necessary to compute the forces twice.
To avoid this, one can store not only the positions x and velocities v in a variable, but
also the accelerations a and implement a time step of the algorithm as follows:

9

1. Update positions as per equation (10), using the value of a stored in the previous
time step.

2. Perform the first half of the velocity update of equation (11): v← v + a
2 ∆t

3. Compute the new forces and update the acceleration: a← F
m .

4. Perform the second half of the velocity update with the new acceleration a.

Task (3 points)
• Implement the symplectic Euler algorithm and the Velocity Verlet algo-
rithm in your simulation of the solar system.

• Run the simulation with a time step of ∆t = 0.01 for 1 year for the
different integrators and plot the trajectory of the moon in the rest frame
of the earth.

Hint If you have written the rest of the program cleanly, it should be enough to imple-
ment new functions step_eulersym(x,v,dt) and step_vv(x,v,a,dt) and to modify the
main loop accordingly to call these functions to use a different integrator.

3.3 Long-term stability

An important property for Molecular Dynamics simulations is the long-term stability.

Task (3 points)
• During the simulation, measure the distance between earth and moon in
every timestep.

• Run the simulation with a time step of ∆t = 0.01 for 10 years for the
different integrators and plot the distance between earth and moon over
time. Compare the results obtained with the different integrators!

10

	General Remarks
	Cannonball
	Simulating a cannonball
	Influence of friction and wind

	Solar system
	Simulating the solar system with the Euler scheme
	Integrators
	Long-term stability

