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A macroscopic theory for capillarity in porous media is presented. The capillary

function in this theory is not an input parameter but an outcome. The theory is

introducing the trapped or residual saturations as state variables. It allows to

spatiotemporal changes in residual saturation. The theory yields process depend

hysteresis in capillary pressure as its main result.
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. Introduction and formulation of the problem
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A predictive macroscopic theory of two-phase fluid flow inside a rigid
medium is a longstanding problem in the physics of fluids, soft mat
disordered systems [1–3]. Describing or predicting the flow of two immisc
incompressible fluids is of fundamental practical importance for numerous
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technology, and many other applied fields [4–7].
My objective in this short paper is to introduce a constitutive the

macroscopic capillarity based on the insight that trapped and residual fl
important [8–10]. A central motivation for this work are the well known di
surrounding the traditional macroscopic equations that are based on the con
capillary pressure and relative permeabilities (see Refs. [4,11]). In p
nonuniqueness of the capillary pressure hampers its use when draina
imbibition occurr simultaneously (as, e.g. during infiltration of a drop of liq
a porous medium [12]). Other well known problems with the capillary pres
its hysteresis, process dependence and dynamic effects such as depend
velocities or rates of saturation change. Residual saturations are not con
assumed in the traditional macroscopic theory. Experimental observatio
instead that residual saturations vary as functions of position and tim
scientists and engineers ignore these problems and continue to use the tra
set of equations.
Distinguishing between percolating and nonpercolating (trapped) fluid re

important for two-phase immiscible displacement. Experimentally the d
between percolating and trapped fluids becomes apparent from the f
hydrostatic equilibrium pressures propagate only in the percolating fluid reg
[8–10] a theoretical formulation was introduced that incorporates this disti
Given the basic distinction between percolating and nonpercolating fl

present paper develops a comprehensive constitutive theory based on the
[8–10]. Let me summarize the content of this paper. Once the defin
percolating verses nonpercolating regions has been given in Section 2 the
balance laws for mass, momentum and volume are formulated in Se
Refs. [8–10] have also discussed energy balance, but this will be unnecessar
present approach. In Section 4 the complete list of constitutive assumptions
An analysis of the resulting equations of motion in special limiting
experimental relevance shows that the traditional concept of capillary pres
consequence (not an input) of the present theory. My presentation conc
identifying a closed expression for capillary pressure and discussing its l
validity in Section 5.
2. Percolating versus nonpercolating fluid regions

ing fluid
rom the
ose fluid

nd fluid
he pore
wetting
subsets
This section defines the difference between percolating and nonpercolat
regions on the pore scale. The physical importance of this difference arises f
fact that in static equilibrium the pressure can become hydrostatic only in th
regions that are connected (or percolating) to the sample boundary.
Consider a sample S ¼ P [M consisting of a solid (and rigid) matrixM a

filled pores P. The boundary of the sample region S � R3 is denoted as qS. T
space P is occupied by two fluids, a wetting fluid called water W and a non
fluid called oil O (or air). Each fluid consists of disjoint and pathconnected



(regions) Wi;Oi. More precisely one has
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W ¼
[NW

i¼1

Wi,

O ¼
[NO

i¼1

Oi,

where the subsetsWi;Oi are mutually disjoint but each of them is pathconn
set is called pathconnected if any two of its points can be connected by
contained inside the set. The sets are called mutually disjoint if Oi \Oj

Wi \Wj ¼ ; holds for all iaj. The numbers NW;NO give the total nu
pathconnected subsets for water and oil. Of course, NW;NO as well as the
Wi;Oi change with time during the displacement process.
Now define percolating (F1;F3) and nonpercolating (F2;F4) subsets by cla

the subsets as to whether they have empty or nonempty intersection with th
boundary qS. More formally define

F1 ¼
[NW

i¼1
qWi\qSa;

Wi ,

F2 ¼
[NW

i¼1
qWi\qS¼;

Wi ,

F3 ¼
[NO

i¼1
qOi\qSa;

Oi ,

F4 ¼
[NO

i¼1
qOi\qS¼;

Oi ,

where for ðF1Þ resp. ðF3Þ the regionWi resp. ðOiÞ have nonempty intersection
sample boundary qS while for ðF2Þ resp. F4 they do not. In this way each po
belongs to one of four regions Fi, i ¼ 1; 2; 3; 4. This results in a total of fo
phases called percolating (resp. nonpercolating) water, and percolatin
nonpercolating) oil. The index i ¼ 5 will be used for the rigid matrix ( ¼ ro
3. Balance laws

than the
sample
nd fluids

ed as the
centered
From now on the discussion refers to a macroscopic scale much larger
pore scale. The microscopic details of the pore scale geometry inside the
region S are considered to be smeared out, and the configuration of pores a
is described by macroscopic quantitites.
The first of these macroscopic quantities is the average porosity fðxÞ defin

(possibly position dependent) volume fraction of pore space P in a region



at x. The volume fractions of the subsets Fi � S; i ¼ 1; 2; 3; 4 andM � S are denoted
ervation
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as fiðx; tÞ. They are in general position and time dependent. Volume cons
requires the relations

f1 þ f2 þ f3 þ f4 þ f5 ¼ 1 ,

S1 þ S2 þ S3 þ S4 ¼ 1 ,

1	 f ¼ f5 ,

where fiðx; tÞ ¼ fðxÞSiðx; tÞ ði ¼ 1; 2; 3; 4Þ are volume fractions, and Siðx; tÞ
saturations of the four phases. The important difference between percola
nonpercolating fluid regions on the pore scale is reflected macroscopi
introducing four instead of two saturation fields Siðx; tÞ. Finally

SW ¼ S1 þ S2 ,

SO ¼ S3 þ S4 ,

defines the total wetting and nonwetting fluid saturations SW;SO, respectiv
Mass balance for the four phases requires

qðf1R1Þ
qt

þ r � ðf1R1v1Þ ¼ M1 ,

qðf2R2Þ
qt

þ r � ðf2R2v2Þ ¼ M2 ,

qðf3R3Þ
qt

þ r � ðf3R3v3Þ ¼ M3 ,

qðf4R4Þ
qt

þ r � ðf4R4v4Þ ¼ M4 ,

where vi ði ¼ 1; 2; 3; 4Þ are the velocities of the four phases, Ri are the densities
the mass transfer rates into phase i from all the other phases.
Momentum balance is generally formulated as

f1R1
q
qt

þ v1 � r

� �
v1 	 f1r � S1 	 f1F1 ¼ m1 	 v1M1 ,

f2R2
q
qt

þ v2 � r

� �
v2 	 f2r � S2 	 f2F2 ¼ m2 	 v2M2 ,

f3R3
q
qt

þ v3 � r

� �
v3 	 f3r � S3 	 f3F3 ¼ m3 	 v3M3 ,

f4R4
q
qt

þ v4 � r

� �
v4 	 f4r � S4 	 f4F4 ¼ m4 	 v4M4 ,

where Si is the stress tensor in the ith phase, Fi is the body force per unit
acting on the ith phase and mi is the momentum transfer into phase i from
other phases.



4. Constitutive assumptions
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The general balance laws need to be augmented with constitutive assum
They are listed in this section.
If the porous medium is macroscopically homogeneous its porosity

fðxÞ ¼ f ¼ const.

If the fluids are incompressible then their densities are given as

R1ðx; tÞ ¼ RW ,

R2ðx; tÞ ¼ RW ,

R3ðx; tÞ ¼ RO ,

R4ðx; tÞ ¼ RO ,

and they are constants RW; RO independent of x and t. When chemical r
between the fluids are absent or neglected, one has

M2 ¼ 	 M1 ,

M4 ¼ 	 M3 ,

to ensure mass conservation for water and oil. For sufficiently slow fl
nonlinear inertial terms

vi � rð Þvi ¼ 0 ,

and the accelerations

q
qt

vi ¼ 0 ,

may be neglected. The body forces are gravity and capillary forces

F1 ¼ R1g ,

F2 ¼ R2gþ FcW ,

F3 ¼ R3g ,

F4 ¼ R4gþ FcO ,

with g being the acceleration due to gravity. The capillary body forces FcW

introduced to describe the effects of capillarity and these forces are experi
evident through the presence of nonpercolating phases. Depending on the
properties and pore structure of the medium, the capillary body forces keep
fluids in place.
The momentum transfer into phase i from all the other phases is assumed

simple viscous drag as it is assumed also in the traditional theory. Thus

mi ¼
X5
j¼1

Rijðvj 	 viÞ ,



where the resistance coefficient Rij quantifies the viscous coupling between phase i

(14)
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and j. It follows from reciprocity that

Rij ¼ Rji .

For the rigid rock matrix v5 ¼ 0 and hence 	Ri5vi is the momentum trans
the wall into phase i. Then

m1 ¼ R13ðv3 	 v1Þ þ R14ðv4 	 v1Þ 	 R15v1 ,

m2 ¼ R23ðv3 	 v2Þ þ R24ðv4 	 v2Þ 	 R25v2 ,

m3 ¼ R31ðv1 	 v3Þ þ R32ðv2 	 v3Þ 	 R35v3 ,

m4 ¼ R41ðv1 	 v4Þ þ R42ðv2 	 v4Þ 	 R45v4 ,

where R12 ¼ 0 and R34 ¼ 0 were used because there is no common interf
hence no direct viscous interaction between these phase pairs. Each Rij is a
matrix.
The capillary body forces are specified as gradients of capillary potential

FcW ¼ 	 rPcW ,

FcO ¼ 	 rPcO ,

where the capillary potentials PcW;PcO are defined as

PcW ¼ P

a 	PaS

	a
1 ,

PcO ¼ P

b 	PbS

	b
3 ,

with constants P

a;P



b;Pa;Pb and exponents a; b40. The capillary body

large where the saturation gradients are large and the percolating saturat
small.
As in the traditional theory the off-diagonal components of the stress tens

the two fluids are neglected. For the percolating phases one has

S1 ¼ 	 P11 ,

S3 ¼ 	 P31 ,

where P1 and P3 are the fluid pressures. For the nonpercolating phases th
tensors S2;S4 cannot be specified in this way because the forces (resp. hyd
pressure) cannot propagate in these phase regions. Here it is assumed th
stresses are given by the pressure in the surrounding percolating phase mod
the energy density stored in the common interface with the surrounding per
phases. This suggests an Ansatz [13]:

S2 ¼ 	 P31þ
sWO

f
qA32

qS2
1 ,

S4 ¼ 	 P11þ
sWO

f
qA41

qS4
1 ,

where sWO is the oil–water interfacial tension, and the unknowns A32ðx; tÞ,
resp. are the interfacial areas per unit volume of porous medium between



and 2, (resp. 4 and 1). (The factor f arises from the definition of Aij per unit volume
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of porous medium.) To avoid the necessity of finding equations of motion
new unknowns A32 and A41 it is assumed that geometrical relations of the

A32 ¼ A

2 S

g
2 ,

A41 ¼ A

4 Sd

4 ,

hold, where A

2;A



4 are prefactors assumed to be constant. In summ

expressions

S2 ¼ ð	P3 þ gP

2S

g	1
2 Þ1 ,

S4 ¼ ð	P1 þ dP

4S

d	1
4 Þ1 ,

for the stress tensors will be used below. Here

P

2 ¼ A


2

sWO

f
,

P

4 ¼ A


4

sWO

f
,

are constants. The mass transfer rates must depend on the rates of saturation
For homogeneous media and incompressible fluids it is assumed that

M12 ¼ Z2fRW
S2 	 S


2

S

W 	 SW

� �
qSW

qt
,

M34 ¼ Z4fRO
S4 	 S


4

S

O 	 SO

� �
qSO

qt
,

where the real numbers Z2; Z4 are constant parameters. The limiting saturat
defined by

S

W ¼

ð1	 SO imÞ

2
1þ tanh tW

qSW

qt

� �� �

þ
SW dr

2
1	 tanh tW

qSW

qt

� �� �
,

S

O ¼

ð1	 SW drÞ

2
1þ tanh tO

qSO

qt

� �� �

þ
SO im

2
1	 tanh tO

qSO

qt

� �� �
,

S

2 ¼

SW dr

2
1	 tanh t2

qSW

qt

� �� �
,

S

4 ¼

SO im

2
1	 tanh t4

qSO

qt

� �� �
,

where the parameters SW dr;SO im characterize the wetting properties of the
medium. The times tW; tO; t2; t4 are equilibration time scales for reaching



equilibrium. For simplicity it will be assumed that there exists a single time scale

(26)
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t ¼ tW ¼ tO ¼ t2 ¼ t4 ,

for capillary equilibration.
5. Results and discussion
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ð28aÞ
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The equations of motion are obtained by inserting the constitutive assu
into the general balance laws. The resulting set of coupled equations can be a
in certain special cases. Note that the formulation above does not contain a
pressure-saturation relationship PcðSWÞ as an input. This contrasts w
traditional theory (see Ref. [3]) where such a relation is needed as a giv
parameter.
The central objective in this paper is to show that, under certain conditi

formulation above yields a capillary pressure function PcðSWÞ as a result. T
important of these conditions is the assumption that the motion of the
(nonpercolating) fluid phases i ¼ 2; 4 decouples from the flow of the percolat
phases i ¼ 1; 3. This is tacitly assumed in the traditional theory. The corres
approximation may be called residual decoupling approximation and it
formulated mathematically as v4 ¼ 0; v2 ¼ 0 and R23 ¼ 0;R41 ¼ 0. In the
decoupling approximation the equations above reduce to a system of 17 eq
for 12 unknowns (P1;P3; v1; v3 and Si; i ¼ 1; 2; 3; 4).
The main result of this paper gives an explicit formula for capillary

PcðSWÞ together with conditions for its validity. The capillary pressure is iden
the present formulation by Pc ¼ P3 	 P1 and subsequently evaluated by com
with the formula PcðSWÞ ¼ C þ ðRO 	 RWÞg � x that holds for capillary equ
in the traditional theory [3,4]. With this the equilibrium capillary pressure is o
after some calculation as

PcðSWÞ ¼
1

2
C þ

Pa

ðSW 	 S2Þ
a 	

Pb

ð1	 SW 	 S4Þ
b þ gP


2S
g	1
2 	 dP


4S
d	1
4

� �

where C is an integration constant that may in general depend on tim
saturations S2;S4 for the nonpercolating fluids are given as functions of SW

S2ðx; tÞ ¼ S

2ðxÞ þ ðS20ðxÞ 	 S


2ðxÞÞ
S

WðxÞ 	 SWðx; tÞ

S

WðxÞ 	 SW0ðxÞ

� �Z2
,

S4ðx; tÞ ¼ S

4ðxÞ þ ðS40ðxÞ 	 S


4ðxÞÞ
SWðx; tÞ 	 S


WðxÞ

SW0ðxÞ 	 S

WðxÞ

� �Z4
,

where

SWðx; t0Þ ¼ SW0ðxÞ ,

S2ðx; t0Þ ¼ S20ðxÞ ,

S4ðx; t0Þ ¼ S40ðxÞ ,



are the initial saturations for the displacement process. The limiting saturations
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SW;SO;S2 and S4 are given by

SW
 ðxÞ ¼ 1	 SO imðxÞ,

SO
 ðxÞ ¼ SO imðxÞ ,

S

2ðxÞ ¼ 0 ,

S

4ðxÞ ¼ SO imðxÞ ,

for imbibition processes (i.e. qSW=qt40), and by

SW
 ðxÞ ¼ SW drðxÞ ,

SO
 ðxÞ ¼ 1	 SW drðxÞ ,

S

2ðxÞ ¼ SW drðxÞ ,

S

4ðxÞ ¼ 0 ,

for drainage processes (i.e. qSW=qto0).
Eq. (27) for Pc does not hold generally, but only in the residual de

approximation together with additional simplifying approximations. The
imations under which Eq. (27) has been derived may be viewed as the cond
validity for the traditional theory. The first approximation is the residual de
approximation introduced above. It reflects the fact that the traditional the
not allow changes of the residual saturations.
To proceed further a second approximation is needed. It assumes that

scale for equilibration of the interface configuration is very large, i.e. t
qSW=qt holds. This simplifies the mass transfer terms.
Thirdly, one also assumes viscous decoupling, i.e. that R31 ¼ 0 and R13 ¼

This assumption is also made in the traditional theory [3]. In addition on
R13 þ R14 þ R15 � M12 and R31 þ R32 þ R35 � M34. Finally it needs to be
that the velocities and volume fractions are independent of x, i.e. that v1
v3 ¼const, f1 ¼const, f3 ¼const, and that the velocities are very small,
v1 ! 0, v3 ! 0.
To summarize, the present paper has introduced a formulation of tw

immiscible displacement in porous media based on general balance la
constitutive assumptions. The theory does not require capillary pressure f
PcðSWÞ or relative permeabilities as input parameters. Instead it predicts
relation under certain conditions as output.
Acknowledgements

alik for
port.
The author is grateful to R. Helmig, T. Joseph, S. Manthey and V. M
discussions, and to the Deutsche Forschungsgemeinschaft for financial sup



References

ew York,

s, Canada,

ego, 1992.

, 1997.

Review E

media, in:

Scientific,

0) 125.

1996) 299.

hung von

, 2003.

ARTICLE IN PRESS

R. Hilfer / Physica A 359 (2006) 119–128128
[1] M. Muskat, The Flow of Homogeneous Fluids through Porous Media, McGraw Hill, N

1937.

[2] J. Kozeny, Hydraulik, Springer, Wien, 1953.

[3] A. Scheidegger, The Physics of Flow Through Porous Media, University of Toronto Pres

1957.

[4] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.

[5] L. Lake, Enhanced Oil Recovery, Prentice Hall, Englewood Cliffs, 1989.

[6] F. Dullien, Porous Media - Fluid Transport and Pore Structure, Academic Press, San Di

[7] R. Helmig, Multiphase Flow and Transport Processes in the Subsurface, Springer, Berlin

[8] R. Hilfer, Macroscopic equations of motion for two phase flow in porous media, Physical

58 (1998) 2090.

[9] R. Hilfer, H. Besserer, Old problems and new solutions for multiphase flow in porous

A. Dmitrievsky, M. Panfilov (Eds.), Porous Media: Physics, Models, Simulation, World

Singapore, 2000, p. 133.

[10] R. Hilfer, H. Besserer, Macroscopic two phase flow in porous media, Physica B 279 (200

[11] R. Hilfer, Transport and relaxation phenomena in porous media, Adv. Chem. Phys. XCII (

[12] H. Sheta, Simulation von Mehrphasenvorgängen in porösen Medien unter Einbezie
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