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Abstract

A macroscopic theory for capillarity in porous media is presented. The capillary pressure
function in this theory is not an input parameter but an outcome. The theory is based on
introducing the trapped or residual saturations as state variables. It allows to predict
spatiotemporal changes in residual saturation. The theory yields process dependence and
hysteresis in capillary pressure as its main result.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and formulation of the problem

A predictive macroscopic theory of two-phase fluid flow inside a rigid porous
medium is a longstanding problem in the physics of fluids, soft matter, and
disordered systems [1-3]. Describing or predicting the flow of two immiscible and
incompressible fluids is of fundamental practical importance for numerous applied
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sciences such as geophysics, hydrology, hydrocarbon production, filtration
technology, and many other applied fields [4-7].

My objective in this short paper is to introduce a constitutive theory for
macroscopic capillarity based on the insight that trapped and residual fluids are
important [8§-10]. A central motivation for this work are the well known difficulties
surrounding the traditional macroscopic equations that are based on the concepts of
capillary pressure and relative permeabilities (see Refs. [4,11]). In particular
nonuniqueness of the capillary pressure hampers its use when drainage and
imbibition occurr simultaneously (as, e.g. during infiltration of a drop of liquid into
a porous medium [12]). Other well known problems with the capillary pressure are
its hysteresis, process dependence and dynamic effects such as dependence on
velocities or rates of saturation change. Residual saturations are not constant as
assumed in the traditional macroscopic theory. Experimental observations show
instead that residual saturations vary as functions of position and time. Most
scientists and engineers ignore these problems and continue to use the traditional
set of equations.

Distinguishing between percolating and nonpercolating (trapped) fluid regions is
important for two-phase immiscible displacement. Experimentally the difference
between percolating and trapped fluids becomes apparent from the fact that
hydrostatic equilibrium pressures propagate only in the percolating fluid regions. In
[8—10] a theoretical formulation was introduced that incorporates this distinction.

Given the basic distinction between percolating and nonpercolating fluids the
present paper develops a comprehensive constitutive theory based on the ideas in
[8-10]. Let me summarize the content of this paper. Once the definition of
percolating verses nonpercolating regions has been given in Section 2 the general
balance laws for mass, momentum and volume are formulated in Section 3.
Refs. [8-10] have also discussed energy balance, but this will be unnecessary in the
present approach. In Section 4 the complete list of constitutive assumptions is given.
An analysis of the resulting equations of motion in special limiting cases of
experimental relevance shows that the traditional concept of capillary pressure is a
consequence (not an input) of the present theory. My presentation concludes by
identifying a closed expression for capillary pressure and discussing its limits of
validity in Section 5.

2. Percolating versus nonpercolating fluid regions

This section defines the difference between percolating and nonpercolating fluid
regions on the pore scale. The physical importance of this difference arises from the
fact that in static equilibrium the pressure can become hydrostatic only in those fluid
regions that are connected (or percolating) to the sample boundary.

Consider a sample S = P U M consisting of a solid (and rigid) matrix M and fluid
filled pores P. The boundary of the sample region S ¢ R? is denoted as 8S. The pore
space [P is occupied by two fluids, a wetting fluid called water W and a nonwetting
fluid called oil O (or air). Each fluid consists of disjoint and pathconnected subsets
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(regions) W;, O;. More precisely one has

NW

w= [ Jw, (1a)
i=1
N

o=Jo. (1b)
i=1

where the subsets W;, @; are mutually disjoint but each of them is pathconnected. A
set is called pathconnected if any two of its points can be connected by a path
contained inside the set. The sets are called mutually disjoint if O; N O; =@ and
W; N W; =0 holds for all i#;. The numbers Ny, Ng give the total number of
pathconnected subsets for water and oil. Of course, Ny, Ng as well as the regions
W;, ©; change with time during the displacement process.

Now define percolating (Fy, F3) and nonpercolating ([F,, F4) subsets by classifying
the subsets as to whether they have empty or nonempty intersection with the sample
boundary 0S. More formally define

Nw

= J wi, (2a)
awiim:ag¢w
NW

= J W, (2b)
aw,»im:algzw
No

= ) o, (20)
No

o= |J O (2d)
an,-fw:fwlgzw

where for (F;) resp. (F3) the region W; resp. (0;) have nonempty intersection with the
sample boundary 0S while for (F,) resp. F4 they do not. In this way each point in P
belongs to one of four regions F;, i = 1,2,3,4. This results in a total of four fluid
phases called percolating (resp. nonpercolating) water, and percolating (resp.
nonpercolating) oil. The index i = 5 will be used for the rigid matrix ( = rock).

3. Balance laws

From now on the discussion refers to a macroscopic scale much larger than the
pore scale. The microscopic details of the pore scale geometry inside the sample
region S are considered to be smeared out, and the configuration of pores and fluids
is described by macroscopic quantitites.

The first of these macroscopic quantities is the average porosity ¢(x) defined as the
(possibly position dependent) volume fraction of pore space [P in a region centered
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at x. The volume fractions of the subsets F; € S,i=1,2,3,4and M C S are denoted
as ¢.(x,1). They are in general position and time dependent. Volume conservation
requires the relations

P+ o+ dstdst+os=1, (3a)
S1+8S+853+84=1, (3b)
1 —¢=ds, (3¢)

where ¢,(x, 1) = ¢(x)Si(x,?) (i=1,2,3,4) are volume fractions, and S;(x, ?) are the
saturations of the four phases. The important difference between percolating and
nonpercolating fluid regions on the pore scale is reflected macroscopically by
introducing four instead of two saturation fields S;(x, 7). Finally

Sw=581+852, (43)
So =83+ 84, (4b)

defines the total wetting and nonwetting fluid saturations Sy, Sg, respectively,
Mass balance for the four phases requires

6((1)1@1)

V- (hrov) = M, (5a)
6(¢2@2) F V- (hoov2) = M, (5b)
6(4’3@3) F V- (¢r03v3) = M, (5¢)
a“’”‘” V- (a0ivi) = M, (5)

where v; (i = 1,2, 3,4) are the velocities of the four phases, g, are the densities and M
the mass transfer rates into phase i from all the other phases.
Momentum balance is generally formulated as

qle](%—i—v]~V>v1—¢1V-21—¢1F1 =m; —vM,;, (6a)
¢2Q2<aat+V2-V>V2—¢2V~22—¢2F2=m2—V2M2, (6b)
$303 <%+V3 : V>V3 — 3V 23— ¢3F3 =m3 —v3 M3, (6¢)
$404 <aat + vy - V) Vo — V- 24— Py Fs =my —vaMy, (6d)

where X; is the stress tensor in the ith phase, F; is the body force per unit volume
acting on the ith phase and m; is the momentum transfer into phase i from all the
other phases.



R. Hilfer | Physica A 359 (2006) 119-128 123
4. Constitutive assumptions

The general balance laws need to be augmented with constitutive assumptions.
They are listed in this section.
If the porous medium is macroscopically homogeneous its porosity

¢(x) = ¢ = const. (7)

If the fluids are incompressible then their densities are given as

01(x, 1) = oy, (8a)
(X, 1) = 0wy (8b)
03(X, 1) = 0g » (8¢)
04(X, 1) = 0g » (8d)

and they are constants gy, 0o independent of x and 7. When chemical reactions
between the fluids are absent or neglected, one has

M= — M, (%9a)
My= — Ms, (9b)

to ensure mass conservation for water and oil. For sufficiently slow flows the
nonlinear inertial terms

;- Vv, =0, (10)
and the accelerations

0

5= 0, (11)
may be neglected. The body forces are gravity and capillary forces

Fi =08, (12a)

F> =08+ Fow, (12b)

F3 =038, (120)

Fs=08+Fe0, (12d)

with g being the acceleration due to gravity. The capillary body forces F.w F.o are
introduced to describe the effects of capillarity and these forces are experimentally
evident through the presence of nonpercolating phases. Depending on the wetting
properties and pore structure of the medium, the capillary body forces keep trapped
fluids in place.

The momentum transfer into phase i from all the other phases is assumed to be a
simple viscous drag as it is assumed also in the traditional theory. Thus

5
m; =) Ry(v; — Vi), (13)
j=1
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where the resistance coefficient R; quantifies the viscous coupling between phase i
and j. It follows from reciprocity that

R; =Rj. (14)

For the rigid rock matrix vs = 0 and hence —R;sv; is the momentum transfer from
the wall into phase i. Then

m; = Ri3(v3 — vi) + Ria(va — vi) — Rysvy, (15a)
my = Rp3(v3 — V2) + Roa(va — v2) — Rosva, (15b)
m3 = R31(v; — v3) + Raa(va — v3) — Rasvs, (15¢)
my = Ry1(vi — v4) + Rap(V2 — v4) — Rysva, (15d)

where R =0 and R34 = 0 were used because there is no common interface and
hence no direct viscous interaction between these phase pairs. Each R; isa 3 x 3 -
matrix.

The capillary body forces are specified as gradients of capillary potentials

Fow = — VI, (16a)

F.o = — VIl.g, (16b)
where the capillary potentials Iy, 1. are defined as

Moy = 07 — T, 8,7, (17a)

o = T} — 11,857, (17b)

with constants IT}, IT}, IT,, [Ty, and exponents a, f>0. The capillary body force is
large where the saturation gradients are large and the percolating saturations are
small.

As in the traditional theory the off-diagonal components of the stress tensors 2; of
the two fluids are neglected. For the percolating phases one has

= —P, (18)
Sy = — P51, (19)

where P; and P; are the fluid pressures. For the nonpercolating phases the stress
tensors X, 24 cannot be specified in this way because the forces (resp. hydrostatic
pressure) cannot propagate in these phase regions. Here it is assumed that these
stresses are given by the pressure in the surrounding percolating phase modified by
the energy density stored in the common interface with the surrounding percolating
phases. This suggests an Ansatz [13]:

owo 043
2 31+ ¢ oS, (20a)
owo 0441
2i= — Pl +———-+—1 20b
4 11+ 5 05, (20b)

where owg 1s the oil-water interfacial tension, and the unknowns Az (x, ), A4 (X, t)
resp. are the interfacial areas per unit volume of porous medium between phases 3
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and 2, (resp. 4 and 1). (The factor ¢ arises from the definition of A4; per unit volume
of porous medium.) To avoid the necessity of finding equations of motion for the
new unknowns A3, and Ay it is assumed that geometrical relations of the form

An =45 S5, (2la)
Ay = A5 S, (21b)

hold, where A3, A} are prefactors assumed to be constant. In summary, the
expressions

Sy = (=P34 P58, M1, (22a)
Sy= (=P +P;S5 N, (22b)

for the stress tensors will be used below. Here

Pi= A3 "%@ (23a)
P = A "%@ (23b)

are constants. The mass transfer rates must depend on the rates of saturation change.
For homogeneous media and incompressible fluids it is assumed that

S, =83 > OSw
M = - | = 24a
12 = Mdew <S?\}w —Sw/) ot (24a)
Sy — S5\ 0So
M4 = - | = 24b
34 = 4900 (Sa — S@> ot (24b)

where the real numbers 7,, 7, are constant parameters. The limiting saturations are
defined by

1—-Soim) [ 0
Sw = Uﬁ 1 —l—tanh(rw%ﬂ
Swar [ oS
+ W;d _1 — tanh (rw 6_:N>] , (25a)
1— DT
St = (2&“ 1 +tanh<r@aait®ﬂ
S im o oS
~I—% _1 — tanh (r@ a—t@ﬂ , (25b)
Sw dr oS
S = ";d [1 - tanh(rg a:”)] , (25¢)
% S@im 65@
S4 = T |:1 — tanh (T4 W):| , (25d)

where the parameters Swdr, Soim characterize the wetting properties of the porous
medium. The times Ty, 7g, T2, 74 are equilibration time scales for reaching capillary
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equilibrium. For simplicity it will be assumed that there exists a single time scale
T=TWw=Top =1 =14, (26)

for capillary equilibration.

5. Results and discussion

The equations of motion are obtained by inserting the constitutive assumptions
into the general balance laws. The resulting set of coupled equations can be analysed
in certain special cases. Note that the formulation above does not contain a capillary
pressure-saturation relationship P.(Sw) as an input. This contrasts with the
traditional theory (see Ref. [3]) where such a relation is needed as a given input
parameter.

The central objective in this paper is to show that, under certain conditions, the
formulation above yields a capillary pressure function P.(Sw) as a result. The most
important of these conditions is the assumption that the motion of the residual
(nonpercolating) fluid phases i = 2,4 decouples from the flow of the percolating fluid
phases i = 1, 3. This is tacitly assumed in the traditional theory. The corresponding
approximation may be called residual decoupling approximation and it can be
formulated mathematically as v4 = 0,v, = 0 and Ry; =0, R4y = 0. In the residual
decoupling approximation the equations above reduce to a system of 17 equations
for 12 unknowns (Py, P3,vi,v3 and S;,i = 1,2,3,4).

The main result of this paper gives an explicit formula for capillary pressure
P.(Sw) together with conditions for its validity. The capillary pressure is identified in
the present formulation by P, = P3 — P; and subsequently evaluated by comparison
with the formula P.(Sw) = C + (0o — 0w )g - X that holds for capillary equilibrium
in the traditional theory [3,4]. With this the equilibrium capillary pressure is obtained
after some calculation as

P 1,
Sw =582 (1 —=Sw—Syf

where C is an integration constant that may in general depend on time ¢. The
saturations S5, S for the nonpercolating fluids are given as functions of Sy by

1 . :
P(Sw) = 3 (c +9P3S) — 5PjSZ") , (27

ok _ n
S2(%.0) = 5300+ (500 - 53000 (L= 50 (8
w
_ Q* N4
S0 = 5300+ (S0 - 55000 (00 = S0 (28b)
w
where
Sw(x, 10) = Swo(x), (292)
S2(x, 10) = Sx(x), (299)

S4(X7 l()) = S4O(X) 5 (29C)
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are the initial saturations for the displacement process. The limiting saturations
St> S5, S5 and S} are given by

Sw+(x) = 1 = Soim(x), (30a)
Sor(X) = Soim(X), (30b)
S;(x)=0, (30c)
§3(x) = Soim(x), (30d)

for imbibition processes (i.e. 0Sy /0¢>0), and by

Sw(X) = Swar(x), (31a)
Sor(x) =1 = Swarl(x), (31b)
S$5(x) = Swar(x), (3lc)
Six) =0, (31d)

for drainage processes (i.e. 0Sy /0r<0).

Eq. (27) for P, does not hold generally, but only in the residual decoupling
approximation together with additional simplifying approximations. The approx-
imations under which Eq. (27) has been derived may be viewed as the conditions of
validity for the traditional theory. The first approximation is the residual decoupling
approximation introduced above. It reflects the fact that the traditional theory does
not allow changes of the residual saturations.

To proceed further a second approximation is needed. It assumes that the time
scale for equilibration of the interface configuration is very large, i.e. that 7>
0Sw /0t holds. This simplifies the mass transfer terms.

Thirdly, one also assumes viscous decoupling, i.e. that R3; = 0 and R;3 = 0 holds.
This assumption is also made in the traditional theory [3]. In addition one needs
Ri3+ Ris+ Ri5 > Mp and R31 + Rz + R35 > M3y, Finally it needs to be assumed
that the velocities and volume fractions are independent of x, i.e. that v; =const,
v3 =const, ¢, =const, ¢, =const, and that the velocities are very small, i.e. that
vi —> 0, v; —> 0.

To summarize, the present paper has introduced a formulation of two-phase
immiscible displacement in porous media based on general balance laws and
constitutive assumptions. The theory does not require capillary pressure functions
P.(Sw) or relative permeabilities as input parameters. Instead it predicts such a
relation under certain conditions as output.
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