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Abstract

The speci c Gibbs free energy has been calculated for the in nite range Ising model with  xed
and  nite interaction strength. The model shows a temperature driven  rst-order phase transition
that di+ers from the in nite ranged Ising model with weak coupling. In the temperature- eld
phase diagram the strong coupling model shows a line of  rst-order phase transitions that does
not end in a critical point.
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1. Introduction

Given the central importance of mean  eld theories in the modern theory of critical
phenomena [1] it is of interest to study the thermodynamics of in nite ranged spin
models with  xed and  nite interaction strength. Little seems to be known about this
class of models. One usually studies the case in which the interaction strength vanishes
inversely proportional to the number of spins. Results without this assumption are not
available because of divergences in the thermodynamic limit. In Refs. [2–10] the present
author has introduced a generalized notion of equilibrium into statistical physics that
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allows to remove such divergences. An application of these ideas puts the in nite range
Ising model with strong coupling into the realm of classical thermodynamics.
Despite the analytical simplicity of the  nal expressions for the thermodynamic po-

tentials of the strong coupling model their derivations will be given elsewhere [11].
Exact results are presented in this paper for the Gibbs free energy, the speci c entropy
and speci c heat capacity. Other thermodynamic potentials can be obtained as usual
from these results, and may then be compared to the results for the weak coupling
model.

2. Model

Consider N Ising spins Si=±1; (i=1; : : : ; N ). The model to be studied in this paper
is de ned by the energy function

E(S1; : : : ; SN ) =−Js
N∑
i=1
i¿j

N∑
j=1

SiSj − H
N∑
i=1

Si ; (1)

where H ∈R is the external magnetic  eld, and Js ¿ 0 the ferromagnetic coupling
constant. The double sum extends over all N (N − 1)=2 pairs of spins.
The text book version of the in nite range mean  eld model (also called weak

coupling model) is de ned by the energy function

E(S1; : : : ; SN ) =−Jw
N

N∑
i=1
i¿j

N∑
j=1

SiSj − H
N∑
i=1

Si ; (2)

whose two spin coupling strength vanishes with N .

3. Results

The equilibrium speci c Gibbs potential g(T; H) for the strong coupling model de-
 ned in (1) was evaluated in the canonical ensemble as a function of temperature T
and external magnetic  eld H [11]. It is found as

g(T; H) = kBT
(
1 + m
2

)
log
(
1 + m
2

)
+ kBT

(
1− m
2

)
log
(
1− m
2

)

+

√
kBTJs
2

(1− m2)− Js
2
; (3)

where m= m(T; H) is the solution of

m= tanh

(
m

√
�Js

2(1− m2)

)
: (4)

Note that Eq. (4) and hence g(T; H) are independent of H .
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Eq. (4) has the following stable solutions:

m(T; H) =

{±1 for all T ¿ 0 ;

0 for all T ¿Js=(4kB) :
(5)

As a consequence the free energy has two branches intersecting for all H at the same
critical temperature

Tc =
Js

kB2 log
2 2

≈ 1:0406845
Js
kB
: (6)

The speci c Gibbs free energy becomes

g(T; H) =




−Js
2

for T ¡Tc; H ∈R ;

−Js
2
− kBT log 2 +

√
Js
2
kBT for T ¿Tc; H ∈R :

(7)

The speci c entropy as a function of temperature

s(T; H) =



0 for T ¡Tc; H ∈R ;

kB log 2− kB
√

Js
8kBT

for T ¿Tc; H ∈R
(8)

has a jump discontinuity

Ks= lim
�→0

(s(Tc − �; H)− s(Tc + �; H)) = kB
2
log 2 (9)

at the critical temperature Tc. The latent heat of the transition is therefore

KQ = TcKs=
Js

4 log 2
: (10)

The speci c heat capacity is obtained as

cH (T; H) = T
@s
@T

∣∣∣∣
H
=



0 for T ¡Tc; H ∈R ;
kB
4

√
Js

2kBT
for T ¿Tc; H ∈R

(11)

and it exhibits a jump of magnitude (kB log 2)=4 at Tc.
The analogue of Eq. (3) in the weak coupling version of the model reads

g(T; H) = kBT
(
1 + m
2

)
log
(
1 + m
2

)
+ kBT

(
1− m
2

)
log
(
1− m
2

)

− Jw
2
m2 − Hm ; (12)

where the magnetization per spin m(T; H) is obtained by solving the familiar mean
 eld equation

m= tanh
(
Jwm+ H
kBT

)
: (13)
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It has a line of  rst-order phase transitions along the temperature axis H =0 that ends
in a critical point at Tc = Jw=kB.

4. Discussion

Both models have the same symmetry. They also share the same ground state. In-
tuitively one expects that at suLciently high temperatures and zero  eld both models
should exhibit a phase with vanishing macroscopic magnetization. This expectation is
indeed con rmed by the exact results. For T → ∞ and H = 0 the speci c Gibbs
potential becomes g(T; H) ≈ −kBT log 2 for both models, and the entropy approaches
kB log 2. Similarly both models have a phase transition into a low temperature phase
with nonvanishing magnetization.
Despite these basic similarities there exist also di+erences. Figs. 1 and 2 show the

speci c Gibbs potential, and speci c entropy for both models for H = 0. The solid
line corresponds to the strong coupling model, the dashed line represents the familiar
weak coupling model at zero magnetic  eld. While the weak coupling version has a
continuous phase transition of order 4

3 (see [2,3,5,12] for a classi cation), the strong
coupling model shows a strong  rst order transition.

0 0.5 1 1.5 2 2.5 3
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

T

G

Fig. 1. Speci c Gibbs potential g(T; 0) as function of temperature T for the strong coupling model (solid
line) and the weak coupling model (dashed line) at vanishing external magnetic  eld H = 0.
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Fig. 2. Speci c entropy s(T; 0) as function of temperature T for the strong coupling model (solid line) and
the weak coupling model (dashed line) at vanishing external magnetic  eld H = 0.

For the strong coupling model all thermodynamic functions are independent of H .
This agrees with expectations because, contrary to the weak model, the  eld energy
becomes negligible compared to the interaction energy in the thermodynamic limit. In
the weak coupling model both energies remain of the same magnitude.
In the strong coupling model there appears a phase transition at all values of the

external magnetic  eld. As a consequence the (T; H)-phase diagram for the strong
coupling model shows a line of  rst-order transitions given by the equation T = Tc.
This line runs from H =−∞ to H =+∞ parallel to the H -axis and does not end in
any  nite critical point. Such behaviour is reminiscent of a Nuid–solid transition.
There are no thermal Nuctuations in the low temperature phase of the strong coupling

model. The spins are everywhere locked into the groundstate con guration, and the
magnetization is m = ±1. Droplets of opposite orientation have vanishing probability
at all T ¡Tc. The low temperature phase has vanishing entropy and heat capacity.
In summary, while the high temperature behaviour of the weak and strong coupling

models are very similar their low temperature phases are distinctly di+erent.
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