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Abstract

This paper reviews a recently introduced generalization of dynamical stationarity involving the
appearance of stable convolution semigroups in the ultralong time limit. Dynamical stationarity
is the basis of the equilibrium concept in statistical mechanics, and the ultralong time limit is
a limit in which a discretized time flow is iterated infinitely often while the discretization time
step becomes infinite. The new limit is necessary when investigating induced automorphisms for
subsets of measure zero. It is found that the induced dynamics on subsets of zero measure is
given generically by stable convolution semigroups and not by the conventional translation group.
This could provide insight into the macroscopic irreversibility paradox. The induced semigroups
are generated by fractional time derivatives of orders less than unity, not by a first-order time
derivative as the conventional group. Invariance under the induced semiflows therefore leads
to a new form of stationarity, called fractional stationarity. Fractional stationarity provides the
dynamical foundation for a generalized equilibrium concept.

1. Introduction

A recent classification theory of phase transitions has paved the way towards a funda-
mental generalization of the equilibrium concept [ 1-9]. Such a generalization is needed
to describe non-equilibrium systems [ 10]. Within the generalized classification scheme
of Ehrenfest | [-3] a generalized equilibrium concept at phase transitions emerges from
the discovery of an entirely new class of phase transitions [5,6] whose critical points
dety classification within the conventional equilibrium theories' . The new generalized

!'"The generalized equilibrium concept was termed “anequilibrium™ in {5] where the prefix “an-"" is an alpha
privativum. Unfortunately the prefix conflicts with the indeterminate article. Therefore, I propose alternatively
to use the name “similibrium ™ from (self-)similar equilibrium. and in German the term “Ahnlichgewicht”
instead of the previous “Ungleichgewichr”.
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equilibrium concept (similibrium or anequilibrium) can be based on a generalization of
dynamical stationarity which is defined for a macroscopic observable X(¢) through the
condition [5.6]

@

d
d{—wX(f)—(), (1.1)

where d”/dt® is the fractional Riemann-Liouville derivative with lower limit at O of
order 0 < w < 1. For @ =1 this generalization reduces to the familiar stationarity and
equilibrium concept.

My objective in this paper is to review recent results concerning the derivation of
fractional stationarity from abstract ergodic theory [9,11]. The physical situation cor-
responds to the critical dynamics at a fluid-solid critical point. Fluid—solid transitions
involve ergodicity breaking, i.e. the transition between a large phase space for the fluid
and subsets of very small measure describing the structurally arrested solid. They differ
in this respect from fluid-fluid phase transitions which show symmetry breaking but no
reduction of the underlying phase or state space. In ergodicity breaking phase transition
it is necessary lo study the dynamics induced on subsets of measure zero of the large
phase space corresponding to the fluid.

Despite the fact that the invariant measures guaranteed to exist by the Bogoljubov-
Krylov theory [12] may be concentrated on subsets of measure zero, the question of
induced transformations on subsets of measure zero appears not to have been studied in
ergodic theory [ 13-17]. It will be seen that pursuing this question from the point of view
of the classification theory [5,6] leads not only to a generalized stationarity concept,
but turns up in addition some useful new insight into the unresolved macroscopic
irreversibility paradox [18].

2. Induced dynamical transformations

Given a dynamical system (7, G, «) with phase or state space I, a o-algebra G of
measurable subsets of I". and a probability measure u, u(7") = 1, the time evolution
of the system is generally a flow (or semiflow) on (I, G, u). A flow is defined as a
one-parameter family of maps 77 : I" — I such that 7° = I is the identity, T+’ = T
for all 1,5 € R. For every G € G also TG.T~'G € G holds. The flow 7" defines the
time evolution of measures through T'u(G) = u(T'G) as a map 7" : I" — I’ on the
space /™ of measures on [". Defining as usual [13,16] u(G,t) = p,((f’)"]G) shows
that

T'u(G.rg) = u(G.ty ~ 1), (2.1)
and thus the flow 77 acts on measures as a translation in time. The existence of the
inverse (T')~' = T~' for a flow expresses the reversibility of the microscopic time
evolution.

Let me briefly recall that the concept of equilibrium appears in ergodic theory as the
invariance of measures under the time evolution. A measure w is called invariant under
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the flow T' if u(G) = w(T'G) = u((T")~'G) forall t € R, G € G. The equilibrium (or
invariance) concept is closely related to the concept of ergodicity. An invariant measure
is called ergodic if it cannot be decomposed into a convex combination of invariant
measures, i.e. if = Aw; + (1 — A)us with gy, wy invariant and 0 < A < | implies
A=l =por A =0, u; = u The invariance of the measure u implies that

T’,LL(G,I()) =/J.(G,f()) (22)

for all G € G.r € R and given ty € R. It may also be expressed as Ap = —du/dt =
where A = —d/dt is the infinitesimal generator of T' defined as the strong limit
A

A= lIm -
-0

(2.3)

with 7 = 7" denoting the identity.

To define the induced time evolution on a subset G C I it is necessary to discretize
the continuous time evolution 7* with ¢ € R into the discrete time evolution T with
k € Z. The discrete time evolution is generated by the map T = T* where At is the
discretization time step. Let G C I" be a physically interesting subset on which one
wishes to study the induced transformation. A point x € G is called recurrent with
respect to G if there exists a k > 1 for which T'x € G. If A is invariant under T
and G € G then almost every point of G is recurrent with respect to G by virtue of
Poincaré’s recurrence theorem. A set G € G is called a w-recurrent set if u-almost
every x € G is recurrent with respect to G. The transformation T defines an induced
transformation S(, on subsets G of positive measure, u(G) > 0, through

Sex(to) =TV x(19) = x(1g + 76 x)) (24)
for almost every x € G. The recurrence time 7¢;(x) of the point x, defined as
T6(x) =Armin{k > 1 : T x € G}, (2.5)

is positive and finite for almost every point x € G. Because G has positive measure it
becomes a probablhty measure space with the induced measure » = p/u(G). If u was
invariant under T then » is invariant under S, and ergodicity of w implies ergodicity
also for v | 13].

Poincaré’s recurrence theorem guarantees that the induced transformation §c G -G
exists for u-almost every x € G with u(G) > 0. To extend the definition to the case
of zero measure let (G, ®,») denote a subspace G C I' of measure u(G) = 0 with
o-algebra @& contained in G, & G, in the sense that B € & forall B € G. u(B) =0
for all B € & while ¥(B) = o for all sets B € § with w(B) > 0. Let 0 < »(G) < 0.
If G is v-recurrent under T in the sense that v-almost every point (rather than w) is
recurrent with respect to G then the recurrence time 75(x) and the map §G are defined
for v-almost every point x € G. In the rest of the paper it will be assumed that G is
v-recurrent under T, and that v(G \ S6G) =0.
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The pointwise definition of the induced transformation Sg is extended to a transfor-
mation on measures by averaging over the recurrence times [9,11]. The set

Gr={x € G:7(x) = kAr} (2.6)
contains the points of G whose recurrence time is kAt. The ratio
v GA)
k) = 2.7
PR =206 (27)

is the probability to find a recurrence time kAt with k& € N. The numbers p(k) define
a discrete (lattice) probability density p(k)&(r — kAt) concentrated on the arithmetic
progression kAt, k € N. The action of the induced transformation Sg on measures ¢ on
G can now be defined as the mathematical expectation [9,11]

Sco(B.t0) = (T o(B.1g)) = Y _ o(B.1o — kAN (k) , (2.8)
h=1

where B C G, and T* was given in Eq. (2.1). Having defined the induced transformation
Si : G’ -- G’ on the space G’ of measures on G it is of interest to investigate the iterated
transformation S in the long-time limit N — oc.

3. The ultralong time limit

The induced transtormations 5(; and S; were defined for discrete time. There are
three possibilities for removing the discretization in a long-time limit. The conventional
method assumes 0 < Ar < o¢ (or Ar = 1). The two other alternatives are At — 0
and At — oc. The first alternative considers the limit lima, 4 oo S¥A! in which the
discretization step becomes small. This possibility may be called the short-long-time
limit or continuous time {imit, and it was discussed in Ref. [9]. The second alternative
is to consider the limit limy,_, o f— oo S in which the discretization step diverges
At — oc. This limit has been considered in Ref. [11], and is called the long-long-
time limit or the ultralong time limit. The continuous time and ultralong time limit are
analogous to the ensemble limit in the classification of phase transitions [5-7.9].

The induced time transformation S; (2.8) acts as a convolution operator in time

Sge(B) = o(B) x p. (3.1)
Iterating the transformation N times gives
SYo(B) = (S}\;’]Q(B)) kp=0(BYxpx*x...xp=g(B)xpy, (3.2)
———
N factors

where the last equation defines py (k). It p,, = limy_—, py exists, the limiting distri-
bution can be used to define S in the N — oc long-time limit.

The N-fold convolution py(k) = p(k)*...xp(k) can be interpreted as the probability
density py(k) = Prob{‘Iv = kAt} of the random sum Ty =71 +...+7y of N
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independent and identically distributed random recurrence times 7; with common lattice
distribution p(k) = p;(k) [5,6]. A necessary and sufficient condition for the existence
of a limiting density p.. for suitably renormalized recurrence times is that the discrete
lattice probability density p(k) belongs to the domain of attraction of a stable density
[19.20]. Then, because At is defined as the maximal value such that all the 7; are
concentrated on the arithmetic progression kAt, it follows that for a suitable choice of
renormalization constants Cy, Dy

Dy kAt — Cy
Nll_rr;sttp I}',)N(k) —h (————N—

:w.§,C,D>]=O, (3.3)
where h(x:w.{,C, D) is a limiting stable density whose parameters obey 0 < @ < 2,
-1<{< 1 -xx<C<ax,and D > 0[19-21].If D = 0 then the limiting distribution
is degenerate, h(x;w,{,C,0) =38(x — C) for all values of w and (.

The individual recurrence times are positive numbers, 7; > 0 for all i € N. Hence
the renormalized recurrence times Jy/Dy are bounded below, and this gives rise to
the constraint P, (1) =0 for t < C on the possible limiting distributions. The limiting
stable distributions compatible with this constraint are given by the distributions whose
parameters obey 0 < @ < 1 and { = —1. For 0 < @ < | the limiting densities can be
written in the form

. 1 t - C
h(.X,TD'. 'ICD)—I—)-]‘/;}IW (D—]’;> . (34)

which expresses the well-known scaling relations for stable distributions [ 19,20,5,7].
The scaling function A, (x) is given as

|
hm(.r)=f—H}‘,'(l‘ (0.1 ) (3.5)

Y (0, 1/w)

in terms of generalized hypergeometric H-functions. For the definition of H}]O(x), the
reader is reterred to Ref. [22] or Refs. [5,7]. For w =1,

(x)= lim hg(x)=6(x—1) (3.6)
1

is the Dirac distribution. 1If the limit exists and is non-degenerate, i.e D # 0, the
renormalization constants Dy have the form

Dyx=(NAN))/TY, 3.7

where A(N) is a slowly varying function. A function A(N) is called slowly varying at
infinity if

. A(hx)
lim

v—oc ALY

=1. (3.8)

for all b > (0 [20].
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Choosing the centering constants as Cy = —CDy one finds from Egs. (3.3) and (3.4)
for N — o¢

At kAt — C, A kAt
prk) ~ g—h (—t—l;w,—l.C,D) L h,,,( ) (3.9)

N Dy " DyDV® DyDlV/w

In the traditional long-time limit N — o~ with 0 < Ar < oc it follows that for
finite k limy o0 03100 KAL/(DNA(N))Y® = 0 and thus limy_, o 0<arcoo P (k) = 0,
unless D = 0. Therefore, the conventional long-time limit produces a degenerate limiting
distribution if it exists. On the other hand, the ultralong time limit allows At to become
infinite. If Ar diverges such that

lim — =1 3.10

By ( )
exists. then this defines a renormalized ultralong continuous time, 0 < t < oc. In this
case D > () contrary to the conventional limit. It follows that limy_,. 4,00 kPN (k) =
the(1/DV@) /DY@ and thus from Eq. (3.2) that

RN
. ' 1 dt
SC (B = [ o(B.6 — 1) (— =
Q(B.1y) / o(B.ty — ) he [*) -
0
| " y
== T'o(B, 15 he(t/17)dr (3.11)
0
where the wltralong time parameter
=DV 50 (3.12)

was identified with the width parameter D of the limit law. If 7,7’ are two independent
random recurrence times then D x (|7 — 7/|7)®/“ for all ¢ < @, where (...) is
the expectation with respect to the limiting distribution. This shows that D'/® has
dimensions of time, and justifies its identification as a new time parameter. The same
conclusion follows from (3.6) for w = | because

. ’ t It .
ST o(B.1) = / U(B.r()/t)fS(,—_ l)([—*=Q(B.r5—t*)=Tt o(B.1)
x

(3.13)

again identifies 1* = D'/® as an ultralong time parameter.

The results (3.11) and (3.13) imply macroscopic (ultralong time) irreversibility by
virtue of (3.12) cven if the underlying time evolution T' and T', respectively, was
reversible. This fact is of interest with respect to the irreversibility paradox [ 18].
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4. Fractional stationarity

The induced ultralong time dynamics S naturally gives rise to a generalized concept
of stationarity and equilibrium by requiring invariance of measures » on G under the
induced dynamics S . The invariance condition analogous to (2.2) requires that

SCv(B.y) =v(B.1) (4.1)

for t >0 and B C G. For 0 < @ < | this condition defines fractional invariance or
fractional stationarity |9.11]. In terms of infinitesimal generators (2.3) the invariance
condition becomes

AgnV(B.1) =0 (4.2)

for t > 0. wherc A, is the infinitesimal generator of the induced semigroup Sﬁ;. For
@ = | the relation (3.13) implies A ;v (B.t) = —dv(B,t)/dt = 0, which resembles the
familiar stationarity concept.

A new and very different stationarity concept arises for @ < 1. In this case the
infinitesimal generators of the stable convolution semigroup Sﬁ; are obtained [20] by

evaluating the generalized function s~ ' [23] on the time translation group T*
™ o
Amoli) = ¢ /r”*'m - Ty ds o) =<'*/sf”‘]T“'dsg(t), (4.3)

o 0

where ¢ > () is a constant. Comparing (4.3) with the Balakrishnan algorithm [24-26]
for fractional powers of the generator of a semigroup T*

X
o : 1-T ¢ ! —a—] §
(--A)p(1)= lim 0= — $ (I -T)o(n)ds (4.4)
1—{0! f 1( *CY) s
0
shows that it A = -d/dr denotes the infinitesimal generator of the original time evolution

T'. then A, = (~A)™ is the infinitesimal generator of the induced time evolution S .
For 0 < w < 1 the generators Ay for Sﬁ; are fractional time derivatives [25,23]. The
differential form (4.2) of the fractional invariance condition for » becomes (Eq. (1.1))

@

ar@

v(B.ry =0 (4.5)
for r > 0, which was first derived in Refs. [5.6]. Its solution is
v(B.t) = Cyt” ! (4.6)

valid for t > (. with Cy a constant. This shows that in a fractional stationary dynamical
statc the volume »(B) of regions in phase space shrinks with time. In this sense the
generalized concepts of stationarity and equilibrium become applicable to dissipative
systems. More generally. (4.5) reads A,v(B.t) = 8(¢) with solution v(B,t) = Cotf‘]



96 R. Hilfer /Physica A 221 (1995) 89-96

for t > 0 in the sense of distributions. The stationary solution with @ =1 has a jump
discontinuity at + =0, and is not simply constant.

In summary, the study of induced transformations on subsets of measure zero in the
ultralong time limit leads to a renormalized ultralong time evolution given by a fam-
ily of stable convolution semigroups whose generators are fractional time derivatives.
Invariance under the ultralong time evolution defines fractional stationarity. Fractional
stationarity provides a dynamical basis for generalizing the equilibrium concept of sta-
tistical physics into what may be called anequilibrium or similibrium. The special case
@ = | recovers the conventional equilibrium concept.

Specific applications of these general results have been discussed elsewhere (see Refs.
[5,6,27,28]). These include fractional relaxation [5,6], fractal time random walks [27]
and fractional diffusion [28]. While these results suggest a relation with the divergence
of relaxation times in solidification and vitrification [29] further theoretical studies are
needed to explore all the ramifications of the generalized equilibrium concept.
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