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The recently introduced concept of local porosity distributions for the geometric characteri- 
zation of arbitrary porous media is scrutinized using computer generated pore space images. 
The paper presents the first direct determination of local porosity distributions from digital 
images. Pore space images with identical two point correlation functions are employed to 
analyse the geometrical sensitivity of the local porosity concept. The main finding is that local 
distributions can be used to discriminate between images which are indistinguishable using 
standard correlation functions. We also discuss the question of length scales associated with 
the local porosity concept. 

1. Introduction 

A recent study [1, 2] has proposed a novel statistical characterization for the 

pore space geometry of arbitrary porous media. Apart  from the intrinsic 

interest in better geometric descriptions of porous media the new characteriza- 

tion can be conveniently used for mean field calculations of physical properties. 

In ref. [1] such a mean field treatment was given for the frequency-dependent 
complex dielectric constant and in ref. [2] the permeability of porous media 

was investigated. Both studies produced new insights into, and remarkably 

good agreement with, well known experimental facts such as Archie's law, 

permeabil i ty-porosi ty relationships, conductivity-permeability correlations or 

dielectric enhancement.  The key quantities in the new geometric characteriza- 

tion of porous media are local porosity distributions (or more generally local 
geometry distributions). Although the conceptual basis and measurement 

procedue for these quantities was described in detail in refs. [I, 2] no actual 
experimental observation was undertaken in those papers. Because the 
theoretical results of refs. [1, 2] for the dielectric and flow properties of porous 
media appear to be in agreement with experiment the direct determination and 
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fur ther  discussion of the underlying geometric characterization becomes of 
primary interest. 

Measurements  of local porosity distributions from digital images are re- 
por ted for the first time in the present paper. In addition the present paper 
aims to evaluate and discuss the measurement  procedure itself. Most im- 
portantly,  however,  the paper analyses the microstructural sensitivity and 
possible limitations of the local porosity concept. 

Despite the fact that local porosity distributions were introduced in an 
at tempt to study naturally occurring porous media such as sedimentary rocks 
the present paper will focus more on general image analysis than on the physics 
of porous media. The reason is our objective to study the microstructural 
sensitivity of the local porosity concept itself. Such a study must precede 
further  use or discussion of the concept and has not yet been carried out. 
Because computer  generated images can be produced easily in a controlled 
fashion they are much bet ter  suited for such an investigation than thin sections 
of naturally occurring porous media. 

2. Definition of local porosity distributions 

Geometr ical  characterization of porous media has in practice been limited to 
a few numbers [3, 4] such as porosity 4~ and specific internal surface area S. The 
porosity is defined as the ratio of pore space volume to total volume. The 
specific internal surface is the ratio between the surface area of the interface 
separating pore space and matrix space to the total volume. A better  statistical 
characterization of porous media has focussed on the intuitive concept of pore 
size distribution [3, 4]. However ,  as discussed at length by Scheidegger [3] and 
Dullien [4], the concept is restricted to exceptional cases (such as the tube 
model)  in which the pore sizes can be determined without ambiguity. Correla- 
tion functions for systems with an arbitrary stochastic geometry have not found 
wide application because the general n-point distribution functions [5] needed 
to calculate physical properties are extremely difficult to observe or measure 
from experiment.  It is therefore of interest to find alternative statistical 
descriptions of porous media. Such an alternative was introduced in ref. [1] 
under  the name of local porosity distribution and this concept will be defined 
next. 

Let  us consider a homogeneously and isotropically disordered pore space. 
We imagine the vertices of a Bravais lattice superposed on it. A primitive cell is 
associated with each lattice point R. Let  GMc(R) denote the set of all points 
inside a cell at the lattice site R. The index MC stands for "measurement  cell". 
We denote  by Ges the set of all points in the pore space, and by ~Gps its 
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boundary. Then we define OGps fq GMc(R ) to be the "local geometry" associ- 
ated with the lattice site R. If p is the density of Bravais lattice points then 
VMC = 1/p is the volume of the measurement cell and this defines the length 
scale of resolution L as L P 1/3 1/3 = - = (VMc) . For the simple cubic lattice with 
cubic primitive cell, L is the lattice constant. We have now defined the concept 
of local geometries for arbitrary topologically or continuously disordered pore 
spaces. For the case of substitutional disorder we identify the lattice of 
measurement cells with the underlying lattice. 

The local geometry inside the measurement cell will become increasingly 
complex as the length scale of resolution L is increased. At every L the local 
geometry may be partially characterized by a few geometrical observables. The 
basic idea of local porosity distributions (or more generally local geometry 
distributions) is to turn a global geometric quantity into a distributed local 
observable. In this paper we focus exclusively on the case in which the porosity 
itself becomes a local concept. 

To define the local or cell porosity we introduce the characteristic (indicator) 
function of an arbitrary set A as 

if r l i e s o u t s i d e t h e s e t A ,  
(2.1) /1 if r lies inside the set A .  

The local (or cell) porosity ~b(R, L)  at the lattice position R and length scale L 
is then defined as 

~b(R, L )  = p f XMC(r; R, L)  Xps(r) d3r, (2.2) 

where XMC(r; R, L)  is the characteristic function of the measurement cell at R 
having size L, Xps(r) is the characteristic function of the pore space, and the 
integration extends over the porous medium. It is now straightforward to 
define local porosity distribution functions. In general the n-cell local porosity 
distribution function p.n(~bl,R~;.. .  ; ~bn,R,; L)  at scale L is the probability 
density to find local porosity ~b t in the cell situated at R~, porosity ~b z in the cell 
at Rz and so on. In the following we will be mostly interested in the case n = 1. 
Because we assumed the porous medium to be homogeneous we may write 
/.q (~b, R; L)  = p.(~b; L)  for the 1-cell distribution function. The bulk porosity 
is obtained by integrating over a large volume or by averaging over a statistical 
ensemble of measurement cells, and thus 

1 

: ~b(R, L----> o0)= J ~b/x(&; L)d~b (2.3) 
t -  

0 

independent of R and L. 
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The local porosity distribution /z(qb; L)  depends strongly on L. At small L 
the local geometries are simple. But they are highly correlated with each other. 
The one-cell function /z(th; L )  at small L does not contain these complex 
geometric correlations. At large L the local geometries are statistically un- 
correlated but each one of them is nearly as complex as the geometry of the 
full pore space. There must then exist an intermediate length scale L* at which 
on the one hand the local geometries are relatively simple, and on the other 
hand the single cell distribution function has sufficient nontrivial geometric 
content to be a good first approximation. For systems with an underlying lattice 
symmetry the length L* is simply chosen to be the lattice constant of the 
uderlying lattice. For other systems several methods to determine L* present 
themselves: 

(1) The entropy method. The entropy method attempts to formalize the 
intuitive considerations above. The idea is to maximize the geometrical content 
contained in tz(4~; L)  or equivalently to minimize the information function 

1 

S(L ) = f/.~(~b; L)log/z(~b;  L)  d~b. 
0 

(2.4) 

The length scale L * =  ~s is then determined through the condition dS/ 
dLIL  ~ = 0 .  -- / 

(2) The correlation method. This method is based on the porosity autocorrela- 
tion function at scale L given as 

.~ f~l~ (4), - ~)(~b2 - ~)/~2(~bl, ~b2; R; L)  d~b I d4'2 
C(R, L)  = Io 1 (~b - &)2/~(~b; L)  d~b ' (2.5) 

where the function jt~2((/)l, (/)2; R; L) = ~u~2((/)l, R1 ;  R2;  L )  depends only on the 
distance R = IR1-R21 by homogeneity. There are several possibilities to 
extract a correlation length from C(R) = C(R, L = 0). A generally applicable 
procedure is to use the value of R at which C(R) has dropped to 1/e. Thus the 
length L* = ~c is defined through the condition C(~c)= 1/e. Note that there 
are other methods to determine a correlation length from C(R). Our particular 
choice has the virtues of simplicity and generality. 

(3) The experimental method. Here the idea is to keep L a free parameter in 
all calculations, and to adjust it by comparison with experiment. This method 
of determining L* will not be considered here. 
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We conclude this section with a brief discussion of the difference between 
our measurement cell and the so-called representative elementary volume [6], 
which has been introduced in order to pass from a set of microscopic equations 
to macroscopic ones. The condition for a length scale LRE v to qualify as the 
typical length scale for a representative elementary volume can in the present 
language be formulated as O~b(R, L ) / O L  =0  at LRE v. This condition is not 
satisfied for L*, in fact one has LRE V >~" L*. The length scale of a representa- 
tive elementary volume is macroscopic while our measurement cells are 
mesoscopic. 

3. Measurability of local porosity distributions 

The most important aspect of/x(~b) =/z(tb; L*) is that it is readily measur- 
able using modern image processing equipment. In the following a simplified 
and approximate procedure to observe /x(~b) in continuously disordered 
homogeneous and isotropic porous media will be discussed. This procedure 
measures/z(~b) from photographs of two-dimensional thin sections through the 
pore space. These photographs must be coloured such that pore space and 
matrix are clearly distinguished. The quality of the pore space visualization 
should be such that a high resolution digitization of the image allows each pixel 
to be assigned unambiguously to either pore space or matrix. 

The next step is to choose a length scale of resolution L, and to subdivide 
the photograph into cells by placing, e.g., a square grid with squares of length 
L over it. The local porosities inside the cells may now be calculated by noting 
that limL~ 0 &(R, L) corresponds to the pixel value 0 or 1 according to whether 
the pixel at position R falls into matrix (0) or pore space (1). The cell poros- 
ities are then 

L 2 
1 

~)i = ---~ ~ (~i(Rj), (3.1) 
j=l 

where ~bi(Rj) is the pixel at position Rj within cell i. The resulting probability 
density is averaged over different ways of placing the measurement lattice, 
over many choices of the primitive cell, and over all available photographs of 
two-dimensional sections to obtain the local porosity density /z(~b). 

At this point it is pertinent to ask whether/~(~b; L) may be calculated simply 
from two-dimensional sections through the porous medium. In the following 
we present an argument that this is indeed the case. Consider a cut plane 
P(n,  y) through the pore space determined through its unit normal n and an 
offset y. The area of pore space on a particular cut plane is given by 
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A(n, y) = f Xps(r) d2r , 
P(n.y) 

(3.2) 

where the integration extends over the whole plane. The porosity determined 
from such a cut is then ¢h'(n, y) = A(n, y)/L 2 where L s is the system size. The 
average porosity obtained from averaging over y is then 

(4~'(n)) = ~ A(n, y) dy .  (3.3) 

Now using that 

1 f f f Xps(r) d2 r d y d n  =fXPs( r )  d3r 4~ 
P(n,y) 

because of isotropy, one arrives at 

( ~ ' ( n ) )  = ~ XPs(r)  d a r =  ~ (3.4) 
Ls 

independent of n. Further averaging over the possible directions n does not 
change this result. 

The porosity autocorrelation function C(R) can be calculated from the pixel 
power spectrum using the Wiener-Khintchine theorem. Inverse Fourier trans- 
form of the power spectrum gives the two-dimensional pixel autocorrelation 
function. Averaging with respect to the angular variable at fixed radius R yields 
then C( R ). 

The result of the measuring procedure described in the preceding paragraphs 
will in general lead to a local porosity distribution of the form 

/z(~b, L)  =/xo(L ) 6(q~) + [1 - /xo(L ) - ~z,(L)]t~(~, L)  + /x , (L)  6(~b - 1).  
(3.5) 

Its bulk (average) porosity ~ is obtained as the expectation value ~ = 
~ 4~/z(~b, L)d~b in agreement with eq. (2.3). The one parameter family of 
local porosity distribution ~(~b, L) contains very much geometrical information 
about the pore space geometry. The choice of a particular mesoscopic scale L* 
implies that/x(ck, L*) contains an optimal amount of information based purely 
on the porosity concept. If the cells were chosen much larger than L*, then the 
simple form 

t~(~b; L >> L*) = 3(4~ - 4]) (3.6) 
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is expected to result. In this limit the geometric information is reduced to q~. At 
the same time the local geometries are nearly as complex as the bulk geometry. 
If on the other hand the cells are chosen very small, i.e. L ~ L*, then the 
measurement procedure above could still be applied and is expected to yield 

tt(~b; 1 ~ L*) = &8(~b - 1) + (1 - ~)~(~b). (3.7) 

Again the geometrical information is reduced to one number. The geometrical 
complexity has disappeared into the correlations between cells which are not 
contained in the single cell quantity /x(~b, L).  

The local porosity distribution /x(~b)=/x(&, L*) is easily calculated for 
ordered or substitutionally disordered porous media, but very difficult to 
obtain for the topological or continuum disorder. For ordered or substitutional- 
ly disordered cases the measurement lattice is given by the underlying lattice, 
and L* is the lattice constant. One finds immediately/x(~b) = 8(~b - &) for the 
ordered case. For substitutional disorder the local porosity density follows 
directly from the distribution of the individual geometrical elements which 
occupy the lattice sites. 

4. Description of test images 

In this section we describe the creation of the artificial thin sections displayed 
in fig. 1. The selection of these images was guided by our objective to explore 
the range of applicability and to test the limitations of the local porosity 
concept. 

Two methods were used in the creation of the four images of fig. 1, which 
may be distinguished as real space (fig. la-c)  respectively Fourier space 
methods (fig. ld) .  

In the real space method we start by filling a 512 x 512 array with random 
numbers drawn from a normal distribution with unit variance. Next we specify 
a filter with size ~F and given shape. We have employed three different filters 
whose shape fits inside a square of side length ~:v = 15. The first filter simply 
had the shape of the full square. The second was obtained by inscription of a 
circle with radius scz into the square. The third filter shape was obtained by 
inscribing an L whose two arms had the length soy = 15 and thickness 7. Next 
the array of random numbers is smoothed by centering the filter on top of a 
given array element and averaging over all random numbers selected by the 
filter shape. The resulting average then replaces the original random number at 
the chosen array element. This procedure is repeated for all array elements 
using periodic boundary conditions whenever necessary. The result is a 
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Fig. 1, Computer  generated images of pore space configurations. The pore space is indicated 
black. The bulk porosity in all four images is q~ ~ 0.195. (a) was created by real space filtering using 
a square filter. (b) was created by real space filtering using a circular filter. (c) was created by real 
space filtering using an L-shaped filter, (d) was created by Fourier space filtering, The filter size in 
all four cases is ~:v = 15. The resolution in all images is 512 x 512 pixels. 

smoothed  512 x 512 array of random numbers.  This array is t ransformed into 
an array of 0's and l ' s  by chosing a threshold value such that a predefined 
fraction of pixels has the value 1. In our case we chose this fraction to be 0.2. 
The pixei value 1 is represented black, the pixel value 0 is represented white. 
The  results are shown in fig. l a - c .  Note that we used the same realization of 
r andom numbers  in all three images. 

The  Fourier  space method starts also from an array of random real numbers ,  
which are now interpreted as random Fourier components.  They are smoothed 

by multiplication with a function f(k) such that f(k)=0 for Ikl < k0 and 
f(k) = [k[ -~ for Ik I/> k 0. The resulting array is Fourier t ransformed and then 
discriminated into O's and l ' s  using a suitable threshold value as before.  The 
image of fig. ld  corresponds to parameters  k 0 = 12 and /3 = 5. 

5. Results and discussion 

Fig. 2 displays the two point correlation function C(R) for the images of fig. 
1. The curve with solid circles connected by a dashed line has a clear minimum 
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Fig. 2. Pixel-pixel-correlation functions for the images in fig. 1. The solid line with open symbols 
corresponds to image ( la) ,  the solid line with solid symbols to image ( lb) ,  the dashed line with 
open symbols to image (lc)  and the dashed line with solid symbols to image ( ld) .  

and corresponds to the image (d). The real space filtered images (a) through (c) 
are nearly indistinguishable beyond the filter size ~v = 15. This reflects their 
visual similarity and is a result of using the same random field underlying the 
filtering process. We obtain the correlation lengths ~a c = 6, ~b = 5, ~:c C = 4 and 
s co = 6 for the four cases. The correlation functions (a) through (c) show only a c 
flat minimum because of the roughness of the pore space boundary. The most 
important  conclusion to be drawn from fig. 2 is that any theoretical approach 
which uses correlation functions to characterize the configurations cannot 
distinguish between the images (a) through (c). 

The one parameter  family of local porosity densities/x(~b, L)  was calculated 
along the lines of sections 2 and 3. We have used a quadratic and a rectangular 
lattice of measurement  cells. Because the results were similar we present them 
only for the quadratic case. We averaged over all possible positions of the 
lattice using periodic boundary conditions, but we did not average over 
different orientations. The resulting probability densities for measurement cells 
with side lengths L = 5, 10, 1 5 , . . . ,  45 are displayed in fig. 3. The data have 
been binned into bins of size 0.01. The data points are assigned to the left end 
of the interval. In fig. 4 we plot the information function S(L) calculated from 
eq. (2.4). From S(L) we find the entropy lengths to be ~s =22 ,  ~:~ = 19, 
~s = 20 and ~s d = 21. Finally, in fig. 5 we collect the local porosity densities with 
L* determined from the entropy method into a single plot. 
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Fig. 3. Local porosity density functions/.t(4~, L) for the images of fig. 1. Solid line corresponds to 
image (la),  short dashed to image (lb) ,  medium dashed to image (lc), long dashed to image (ld) .  
The results displayed are for measurement cells of side length L = 10 in (a), L = 15 in (b), L = 20 
in (c), L = 25 in (d), L = 30 in (e), L = 35 in (f), L ---40 in (g) and L = 45 in (h). 

T h e  f i rs t  o b s e r v a t i o n  f r o m  fig. 3 is t h a t  t h e  loca l  p o r o s i t y  d e n s i t i e s  s h o w  

i n d e e d  t h e  e x p e c t e d  c r o s s o v e r  f r o m  b e i n g  c o n c e n t r a t e d  a t  t h e  o r i g i n  a n d  a t  1 

f o r  s m a l l  L to  b e i n g  c o n c e n t r a t e d  a r o u n d  ~ f o r  l a r g e  L .  T h e  c r o s s o v e r  l e n g t h  is 

f o u n d  t o  r a n g e  c l o s e  to  t h e  e n t r o p y  l e n g t h  d e t e r m i n e d  f r o m  fig. 4. T h e r e  

a p p e a r s  to  b e  c o n s i d e r a b l e  s t a t i s t i c a l  u n c e r t a i n t y  r e f l e c t e d  in  t h e  r o u g h n e s s  of  
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Fig. 3 (cont.). 

(d) 

65 

t h e  c u r v e s  w h i c h  r e su l t s  f r o m  the  r e l a t i v e l y  c o a r s e  d i g i t i z a t i o n  o f  512 x 512 

p i x e l s .  
T h e  m o s t  i m p o r t a n t  o b s e r v a t i o n  f r o m  figs. 3, 4 a n d  5 is t h a t  t he  loca l  

p o r o s i t y  a p p r o a c h  is m o r e  s e n s i t i v e  in d i s t i n g u i s h i n g  b e t w e e n  d i f f e r e n t  i m a g e s  

t h a n  t h e  c o r r e l a t i o n  f u n c t i o n  a p p r o a c h .  T h e  loca l  p o r o s i t y  d e n s i t i e s  d i s p l a y e d  

in  fig: 3 s h o w  c h a r a c t e r i s t i c  d i f f e r e n c e s  b e t w e e n  the  i m a g e s  w h i c h  a r e  d i r e c t l y  
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Fig.  3 (con t . ) .  

( e )  

(0 

r e l a t e d  to  visual  fea tu res .  T h e  sensi t iv i ty  of  the  local  po ros i t y  d i s t r ibu t ion  is 

mos t  c lear ly  seen  by  c o m p a r i n g  the  m e d i u m  d a s h e d  curve  for  i m a g e  (c) wi th  

t hose  for  i m a g e  (a) (sol id  curve)  and  i m a g e  (b)  (na r row d a s h e d  curve) .  T h e  

curves  for  i m a g e  (c) a re  c lear ly  d i f fe ren t  b e y o n d  the  s ta t is t ical  unce r t a in ty  even  

at  va lues  o f  L which  a re  much  l a rge r  than  ~r such as L = 30. The  r e a d e r  shou ld  

k e e p  in m i n d  tha t  image  (c) differs  f rom (a) and  (b)  on ly  in the  f i l ter  shape .  
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(g) 

(h) 

The  differences be tween  images (a) and (b) are less p ronounced  and higher  
resolut ion images giving bet ter  statistics might  show that  the filter shapes are 
no t  sufficiently different.  F r o m  our  data  however ,  there  appears  to be a 
significant distinction in the low porosi ty  regime for  in termedia te  values of  L.  

We think that  the slightly smoo the r  pore  space b o u n d a r y  o f  image (a) reflects 
itself in a somewha t  larger f ract ion of  small porosi ty  regimes for  L = 20 and 
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Fig .  4. E n t r o p y  f u n c t i o n  S(L) as a f u n c t i o n  o f  t he  l eng th  o f  t he  m e a s u r e m e n t  cell.  T h e  l ine s ty les  
a r e  t h o s e  o f  fig. 2. 
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Fig .  5. L o c a l  p o r o s i t y  d e n s i t y  f u n c t i o n s  tx(~b, L )  w i th  L = L*  = ~s fo r  t he  i m a g e s  o f  fig. 1. Sol id  
l ine c o r r e s p o n d s  to  i m a g e  ( l a )  w i t h  ~s  = 22, s h o r t  d a s h e d  to  i m a g e  ( l b )  w i th  ~:b = 19, m e d i u m  
d a s h e d  to  i m a g e  ( l c )  w i th  ~:s = 20, l o n g  d a s h e d  to  i m a g e  ( l d )  w i th  ~.~ = 21. 
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L = 25. Note also that curves (a) and (b) appear to exhibit signs of bimodality 
although this effect is probably statistically insignificant. 

The information function displayed in fig. 4 also reveal considerable geomet- 
ric sensitivity. In particular the two most similar picturcs (a) and (b) exhibit the 
largest difference in their entropy lengths, ~:s > ~:b. This appears to resemble 
the fact that the square filter extends beyond the circular one in the diagonal 
direction. Note also that the entropy lengths determined from fig. 4 are 
consistently larger than the correlation lengths SCc determined from fig. 2. 

Fig. 5 shows the local porosity distributions /~(~b, L*) for the suggested 
choices of L* = ~:s. While curve (c) is still significantly different from (a) and 
(b) the difference between the latter two curves appears to vanish. Here we 
encounter naturally the limitations for the sensitivity of the local porosity 
distributions. Two images created from an identical field of random numbers 
by very similar filters can no longer be distinguished. We emphasize that in our 
opinion more measurements of local porosity distributions arc needed before 
the degree of statistical uncertainty of such data is clarified. Because of this it is 
also premature to settle on an "optimal" choice for L*. Unless a particular 
choice is made the full one parameter family/~(th, L)  of distributions should be 
considered. 

6. Conclusion 

The local porosity approach to characterize the stochastic geometry of 
porous media was scrutinized in this paper. We have presented the first 
measurements of local porosity distributions from digital images. At the same 
time we have put the geometric sensitivity of local porosity distributions to a 
rather severe test. We find that the local porosity concept appears to be 
surprisingly sensitive to geometric features. However, more studies along the 
same lines are necessary to further explore the limits of this sensitivity. Such 
studies are also desirable in view of the fact that local porosities provide a 
theoretical framework inside which the nature of empirical scaling relations for 
the physical properties of porous media can be understood on the basis of the 
microgeometry [1,2]. Measurement of local porosity distributions and local 
percolation probabilities from laboratory samples will allow quantitative com- 
parison of the theory with experiment. 
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