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Abstract. In this paper we continue the investigation of the effective transport pa-
rameters of a digitized sample of Fontainebleau sandstone and three reconstruction
models discussed previously in Biswal et. al., Physica A 273, 452 (1999). The effec-
tive transport parameters are computed directly by solving the disordered Laplace
equation via a finite-volume method. We find that the transport properties of two
stochastic models differ significantly from the real sandstone. Moreover, the effective
transport parameters are predicted by employing local porosity theory and various
traditional mixing-laws (such as effective medium approximation or Maxwell-Garnet
theory). The prediction of local porosity theory is in good agreement with the exact
result.
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1. Introduction

It is well-known that the overall mechanical and transport properties of
porous materials depend strongly on the microstructure [1, 7-12, 19—
22]. Because in general the exact microstructures of porous media are
not known in detail, one often uses models for calculating the effective
macroscopic properties. For detail see [1-3, 8-12] and references therein.

The objective of the present article is to continue the study of
transport properties of digitized realistic porous media. Simultaneously,
we are testing the validity of local porosity theory (LPT) [9, 11, 13].
Local porosity theory was employed successfully to distinguish the mi-
crostructures of various porous media [4, 13], and the mixing-law based
on LPT was used to determine the effective transport parameters of
porous media [12, 20, 22].

2. Effective transport parameters

For homogeneous and isotropic random media the effective parameter
C is defined through an ensemble average of the local constitutive
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equation

(J(r)) = -C(VU(r)). (1)

where J(r) is the local current and VU (r) is the local potential gradient.
If one knows the exact microstructure of a porous medium, one can
calculate J(r) and VU(r) numerically by solving the local continuity
equation

V- -Jr)=0 reG (G=P,M) (2)
combined with the local constitutive equation
J(r) = -C(r) VU(r) (3)

and appmpriate internal and external boundary conditions. In eq. (2)
is C(r) = C, xp(r) + Cy xu(r), where C, and C,; are material con-
stants of pore space and matrix space, respectively. Egs. (2) and (3)
have been solved recently for a sample of Fountainebleau sandstone via
finite-volume method [20, 22, 12]. After taking the average of J(r) and
VU(r), and inserting the two averaged values in eq. (1) the effective
conductivity C can be directly obtained.

3. Local porosity theory

In practice, the exact microstructure of porous media is usually not
known in detail. Therefore, only approximate effective transport pa-
rameters can be computed based on partial microgeometric knowledge,
such as porosity, specific internal surface, connectedness or correla-
tion lengths [9-13, 16, 20-22]. The partial microgeometric knowledge
included into LPT is information about porosity and connectivity fluc-
tuations of porous media in terms of local porosity distribution p(¢, L)
and local percolation probability (¢, L). u(¢, L) is the probability den-
sity to find a local porosity ¢ within the cubic measurement cell of
sidelength I and \(¢, L) gives the fraction of percolating cells with
prescribed local porosity ¢.

The mixing-law based on local porosity theory reads [9, 11, 22]
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where
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= 2C, + C, + 2¢(C, — CM)> \
Che=Cu ( 2C, +Co— $(C, = Cy) /) (6

The mixing-law based on LPT can be viewed as a generalization of
the classical self-consistent approximation. In the limit L — 0, Eq. (4)
reduces to the classical effective medium approximation (EMA) [6]

- C]P’ - CEMA CM - CEMA_ —

—P “BMA SR 7
¢CP+ZCEMA Cyu+2C 4 ¢

+(1-9)
For u(¢, L) = 6(¢— $) and A(¢, L) = 1 we obtain the Maxwell-Garnett
approximation with P as the background phase (MGP)

EMGP = qu : (8)

For u(¢,L) = §(¢ — ¢) and A(¢, L) = 0 Eq. (4) recovers the Maxwell-
Garnett approximation with M as background phase (MGM)

@MGM = am . (9)

For more detail see [11, 19].

4. Results and discussion

We apply now LPT to analyze quantitatively four different samples.
The first sample is a digitized real Fountainebleau sandstone (EX),
which is obtained by microtomographic imaging [3, 4]. The second
sample is a diagenesis model (DM), which is obtained by imitating
the natural sandstone-forming processes. As in the natural processes,
the numerical modelling of DM is performed in three main steps: grain
sedimentation, compaction and diagenesis described in detail in [2, 17].
The Gaussian field reconstruction model (GF) is generated in such a
way that the two-point correlation function of this model is identical to
a given reference correlation function by filtering Gaussian random vari-
ables. Here the reference correlation function is the correlation function
of the real Fountainebleau sandstone G .. For further information see
[1, 18]. The last model, denoted as SA, is reconstructed by employing a
simulated annealing technique. This technique produces a configuration
S¢, by minimizing the deviations between its correlation function G,
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Table I. Overview of geometric properties of the Fontainebleau
sandstone and its reconstruction models and their effective
conductivity C' and standard deviation

i “ Samples |

]l Sex l Spum | Ser ‘ Sea l
| s N 0.1355 | 0.1356 | 0.1421 [ 0.1354 |
| |
| \

H 0.01880 | 0.01959 | 0.00234 l 0.00119

stand. dev. || +0.00852 \ +0.00942 | +0.00230 | +0.00234

and the reference correlation function G,,. Besides the correlation
function G another statistical property, which has to match with the
reference statistical property, is porosity ¢. The detailed description of
the simulated annealing method can be found in [14, 23]. Note that
we can choose other statistical properties, which should be equal to
the prescribed reference properties, such as linear or spherical contact
distributions [15].

We choose that the matrix space as nonconducting, i.e. G, = 0, and
pore space as conducting, i.e. C, = 1.0 (dimensionless). The boundary
conditions are chosen so that potential values were prescribed at two
parallel faces of the cubic sample S (Dirichlet boundary condition), and
the flux across the four remaining faces of S is set to zero (Neumann
boundary condition).

The disorder average of fields (J(r)) and (VU(r)) are known to
fluctuate strongly from one sample to another. To improve the statistics
all of the samples were cut into eight pieces of dimension 128 x 128 x128.
For each piece three values of C; were obtained from the exact solution
corresponding to the application of the potential gradient in the z-,
y- and z-direction. Then, the values of C of samples are obtained by
taking the arithmetic average of C;. The results are displayed in Table
I. The standard deviations in Table I show that the fluctuations in C
are indeed rather strong. For ergodic geometries C can be calculated
directly from the exact solution for the full sample. For sample EX the
exact transport coefficient for the full sample is C, = 0.02046 in the
z-direction, C’ = 0.02193 in the y-direction, and-C, = 0.01850 in
the z»directiOn [22]. All of these are seen to fall within one standard
deviation of C. The effective conductivity of the DM model matches
quite closely to that of EX. The effective transport parameters C of GF
and SA differ strongly from C of EX. This was already predicted in [4]
on a pure connectivity analysis based on A from LPT.
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For LPT calculations we have to choose the sidelength L of the
measurement cell K. In the case of small L the local geometries become
strongly correlated, and this is at variance with the basic assumption
of weak or no correlations. On the other hand, for large I the assump-
tion that the local geometry is sufficiently simple becomes invalid [11].
Hence, one expects that formula (4) will yield good results only for
intermediate L. We use the so called percolation length L,, which is
defined through the condition

d*p

—= =0 (10)

dL? |, _ L,
assuming that it is unique. The idea behind this definition is that at the
inflection point the function ps(L) changes most rapidly from its trivial
value p(0) = ¢ at small L to its equally trivial value p(co) = 1 at large
L (assuming that the pore space percolates). For another choice of L
see [11, 12, 20, 22]. At L = L, we find for the effective conductivity of
EX the value C, .. = 0.025115 in good agreement with the exact result.

LPT

In contrast one has Cy,,, = 0 for the effective medium approxima-
tion because the porosity ¢ is below the percolation threshold ¢, = 1/3.
Similarly, the result C,,.,, = 0 obtained by MGM-approximation un-
derestimates the effective parameter C' of EX. On the other hand,
Cyap = 0.094606 obtained from the MGP-approximation overesti-
mates the exact result. These results reflect the nature of the approx-
imations involved, because in both cases the inclusion phase is always
dispersed in the background phase without having a connecting path.
The functions g and A, which are used in LPT, provide more infor-
mation about the underlying microgeometry than a single parameter
¢, which are employed in the traditional mixing-laws (EMA, MGM,
MGP). Therefore, the estimate of C| ., obtained by LPT seems to be
better than those obtained by traditional mixing-laws.
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