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Abstract. Hysteresis and fluid entrapment pose unresolved problems for the
theory of flow in porous media. A generalized macroscopic mixture theory for
immiscible two-phase displacement in porous media (Hilfer 2006b Phys. Rev. E
73 016307) has introduced percolating and nonpercolating phases. It is studied
here in an analytically tractable hyperbolic limit. In this limit a fractional flow
formulation exists, that resembles the traditional theory. The Riemann problem
is solved analytically in one dimension by the method of characteristics. Initial
and boundary value problems exhibit shocks and rarefaction waves similar to
the traditional Buckley—Leverett theory. However, contrary to the traditional
theory, the generalized theory permits simultaneous drainage and imbibition
processes. Displacement processes involving flow reversal are equally allowed.
Shock fronts and rarefaction waves in both directions in the percolating and the
nonpercolating fluids are found, which can be compared directly to experiment.
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1. Introduction

A predictive theory of two-phase flow in porous media is a longstanding challenge for
theoretical physics (Muskat 1937, Kozeny 1953, Scheidegger 1957, de Wiest 1969, Bear 1972,
Kadanoff 1985, de Gennes 1988, Lenormand et al 1988). Displacement processes of two
immiscible fluids inside a rigid porous medium have motivated and advanced several subfields
of theoretical physics ranging from percolation theory (Kirkpatrick 1973, Chandler et al 1982,
Stauffer and Aharony 1992, Sahimi 1993) and pattern formation (Weitz et al 1987, Oxaal 1991,
Oxaal et al 1991, Ferer et al 2003, Babchin et al 2008) to wetting phenomena (de Gennes 1985,
Bonn et al 2009) or nonlinear field theories (Hopf 1969,Glimm et al 1982, LeFloch 2002).
Macroscopic models for two-phase flow in porous media on the scale of 10°~10° m (e.g.
petroleum reservoirs) generally start from the well known Buckley—Leverett (BL) equation
(Buckley and Leverett 1942). Although this nonlinear partial differential equation is nowadays
universally accepted as a starting point in theoretical physics (Bogdanov et al 2003), mathe-
matics (Bourgeat 1997), numerics (Chen et al 2006) and engineering (Lake 1989), it has never
been derived rigorously from the underlying microscale equations (Hilfer 1996). Its solutions
cannot reproduce simple experimental observations such as capillary desaturation or hysteresis,
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because it is valid only in the limit of vanishing flow velocities when fluid—fluid interfaces or
contact lines do not move (Hilfer 2006a). Our objective in this paper is to deduce and solve
generalized macroscopic equations valid for finite velocities, which include the traditional
BL theory in the limit of vanishing velocities. Realistic flows with finite velocities produce
motion of fluid—fluid interfaces and contact lines (Lenormand et al 1988). Experimentally this
gives rise to macroscopic hysteresis between imbibition and drainage processes and to spatial
and temporal variations of residual, trapped and immobile fluid regions (Payatakes 1982).
Mobilization of these trapped residual fluids is also technologically very important.

Distinguishing and identifying the physical importance of percolating (= hydraulically
connected) and nonpercolating (= hydraulically isolated) fluid parts (Hilfer 1998, Hilfer and
Besserer 2000) within the classical B problem is the main objective, physical concept and
innovation of this paper. Explicit generalized equations will be extracted from the equations
introduced in Hilfer (2006a, 2006b, 2006c) using a hyperbolic approximation. It will then be
possible to formulate, study and solve the analogue of the classical BL frontal advance problem,
and to introduce and solve in addition a frontal advance problem with subsequent flow reversal.

Given these objectives we recall that the classical BL problem provides a simple example
where the nonlinear partial differential equations can be solved analytically without numerical
approximations (Buckley and Leverett 1942, Aziz and Settari 1979, LeVeque 1992). Let us also
recall that the numerical solutions are difficult to obtain, because classical solutions of the BL
problem may develop discontinuities from smooth initial data, as it is characteristic for nonlinear
hyperbolic conservation laws (Lax 1957, Glimm et al 1982). One needs and utilizes the
analytical BL solution therefore routinely to test numerical algorithms (Aziz and Settari 1979,
LeVeque 1992, Chen et al 2006). Reformulating the equations in Hilfer (2006a, 2006b, 2006c¢)
with the equal pressure assumption and other experimentally justifiable assumptions yields
a fractional flow formulation analogous to the traditional BL theory. It is found that shock
waves may appear from this formulation as in the BL case. A difficulty, which is not
present in the traditional BL theory, arises from spatially discontinuous flux functions due to
hysteresis. Monotone flux functions will be discussed in this paper, nonmonotone functions in
a forthcoming publication.

The theory of immiscible two-phase flow in porous media is a challenging and
longstanding open problem of theoretical physics, because of the multiple scales and the
nonlinearity of the governing equations. On microscopic scales wetting properties and
roughness of surfaces are important. On mesoscopic scales the flow is determined by the
complex pore structure and mobile fluid—fluid interfaces. On larger scales there is considerable
uncertainty about the important physical observables, as well as geometrical and transport
parameters that govern the properties of the permeable fluid—solid mixture. As a result the linear
response (or mean field) theory for single-phase flow in porous media is well established to be
Darcy’s law, while the linear response theory for two-phase flow is still unknown at present. The
present paper introduces important physics insights and linear response concepts to overcome
this impediment.

This paper is structured as follows. In section 2 a brief review and the fractional flow
formulation are given. In section 3 pertinent approximations are formulated. In section 4 the
number of equations is reduced. The general solution is obtained based on the method of
characteristics in section 5. The Riemann problem is formulated in section 6. It is solved and
discussed in section 7, and generalizes the BL problem (Buckley and Leverett 1942) in the sense
of accounting for percolating and nonpercolating fluid phases. The paper concludes with several
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remarks in section 8. For the convenience of the general reader, the widely used traditional
theory (BL theory) is recapitulated in an appendix, which highlights the analogy between the
traditional approach and this paper.

2. Definition of the model

2.1. Balance laws and constitutive assumptions

In this section a brief description of the model, which accounts for percolating and
nonpercolating fluid phases, is given. For details we refer to preceding works. The mathematical
model was originally formulated in Hilfer (2006a, 2006b, 2006c¢). It is based on ideas introduced
earlier in Hilfer (1998) and Hilfer and Besserer (2000). A self consistent closure condition was
proposed and used in numerical simulations in Hilfer and Doster (2010) and Doster et al (2010).
In this paper the model is restricted to one spatial dimension.

Percolating and nonpercolating fluid parts are distinguished as separate phases and,
hence, a two-phase system is treated as a four phase system (see Hilfer (1998), Hilfer and
Besserer (2000), Hilfer (2006a, 2006b) for definitions and details). Following the notation of
Hilfer (2006b) we shall name one fluid water, and identify it with index W, and the other
fluid oil, and identify it with index . The percolating water is identified with index i =1,
the nonpercolating water with i = 2, the percolating oil with i = 3 and the nonpercolating oil
with i = 4. For an incompressible porous medium volume conservation requires

S1+Sz+S3+S4=1 (1)

to hold, where S; (x, t) is the saturation of phase i as function of position x and time #. The mass
balance for fluid phase i € {1, 2, 3, 4} in a porous medium is expressed in differential form as

d(@S;0:) N d(pS;0ivi)
at 0x
where Q;(x, 1), ¢(x, t), v;(x, t) are mass density, porosity and velocity of phase i as functions
of position x € [x,, x,] and time ¢ € R, and M, is a source or sink term for the corresponding
phase. For incompressible fluids and rigid homogeneous media the porosity and the densities
do not depend on position x and time ¢

= M;, 2)

¢(x. 1) =9, (3a)

QD=0 (3b)
fori =1,2,3,4. One has

Ow = Q1 = 02, (4a)

Q0 =03 = 04, (4b)

where o, 0g are the densities of water (wetting fluid) and oil (non-wetting fluid). The source
terms M; represent mass exchange between percolating and nonpercolating phases through
breakup and coalescence. They are assumed as

S —5"\ 08

My (Sw. S, 0,Sw) = —My = mapow | ——— s (5a)
Sw™ — Sw ot
Sy — S4* a5

M;(Syr, S, 0, Sw) = —My = n4¢p00 | ——— s (5b)
Sw™ — Sw ot
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where 1, 14 are constants and the shorthand 9, = 9/9¢ is used. The parameters Sw*, S5, S; are
defined by

Sw" (9 Sw) = (1 = Soim)® (3, Sw) + Swar [1 — © (3, Sw)], (6a)
8" (9, Sw) = Swar [1 — © (3, Sw)] (6D)
S (3, Sw) = Soim® (9, Sw), (6¢)

where Sy, Soim are limiting saturations for S,, S, and ®(x) denotes the Heaviside unit step
function. The momentum balance is written for phase i € {1, 2, 3, 4} as
D 0%;

¢SiQiEUi—¢SiW—¢SiFi =m; —v; M;, (7
where D' /Dt = /9t +v;0/3dx denotes the material derivative for phase i, ¥; the stress tensor
in the ith phase, F; the body force per unit volume acting on the ith phase and m; denotes the
momentum transfer into phase i from all the other phases. The material derivatives are neglected
here

D
¢SiQiD_tvi =0, (8)

because realistic subsurface flows have very small Reynolds numbers (Hilfer 1996).
The stress tensors for the four phases are specified as

T(P)=—P, (9a)
So(Ps, Sp) = —Ps+y PyS) (9b)
23(P3) = —Ps, (%¢)
Y4y (Py, Sy) = —P +8P;S) 7, (9d)

where Pj(x,t) and Ps(x,t) are the fluid pressures in the percolating phases. The constants
P}, P and exponents y, § are constitutive parameters, which account for the energy density
stored in the common interface with the surrounding percolating phase. The body forces are
given by gravity and capillarity. They are specified as

Fy =0:gsin 7, (10a)
. s

F>(S1,0:81) = 028 Slnl9+l'laa—x, (100)

F; = 038 sin ¢, (10¢)
, 9857

Fy(S3, 0,83) = 04g sin ¥ + 11, P (10d)

with constitutive parameters I1,, [y, o, B > 0. The capillary terms in F5, F; are body forces
derived from a capillary potential (see Hilfer 2006a, 2006b, 2006¢). They serve to retain non-
percolating phases inside the medium. The angle 0 < ¥ < /2 is the angle between the direction
of the column and the direction of gravity with ¥ = /2 corresponding to alignment. Finally,
the momentum transfer terms are assumed to be given by linear viscous drag characterized by
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constitutive resistance coefficients R;; through the equations

my(vy, v3, vg) = Vri3(V3 — V1) + Ria(vy — V1) — Rysvy, (11a)
my(v2, V3, Vg) = Ro3 (V3 — v2) + Roa(vs — v2) — Ropsvy, (11b)
m3(vy, V2, v3) = R31 (V1 — v3) + Raa(v2 — v3) — Rasvs, (11c)
my(v1, V2, V4) = R4 (V1 — v4) + Rap(v2 — v4) — Rysvy, (11d)

where R, = 0 and R34, = 0 was used, because there is no common interface and hence no direct
viscous interaction between these phase pairs. The index i =5 represents the rock matrix.
For physical motivation of the constitutive assumptions we refer the reader to the original
publications (Hilfer 2006a, 2006b, 2006c¢).

2.2. Reformulation of the model

The balance laws (1), (2) and (7) are rearranged in terms of volume flux densities. The right-
hand side of the momentum balance (7) is linear in the velocities v; and can be written as

m; — Mv, V]

my+Mv, | - (12)
ms3 — M3v3 vz |’

my+ Mzvy Vg

where the components of the generalized resistance matrix R are

Ry 0 —Riz —Ru
0 Ry —Ry3 —Ry

R(Sw, Sa, Sa, 3, Sw) = "Ry -Ra Ru o | (13)
—Ry —Ryp O Rus
and the shorthand notation
R11(Sw, Sz, 0:Sw) := Ris+ Ri3+ Ry + My, (14a)
Ry (Sw, S2, 0:Sw) := Rys + Roz + Roy — M, (14D)
R33(Sw, S4, 0;Sw) := R3s+ R3; + Ry, + M3, (14¢)
Rus(Svy, Sa, 0:Sw) := Rus + Ra1 + Ryp — M3 (144d)

was used. Inserting equations (12) into (7), solving the set of equations for the linearly appearing
velocities, and multiplying with the corresponding phase volume density ¢.S;, i € {1, 2, 3, 4},
one finds

Ql ¢S]U1 ale +F1
Q2 ¢S2U2 8x22+F2

= =A , 15
0s $S3v3 0 X3+ I3 (15
(on PS40, 024+ Fy

where phase volume flux densities Q; and the mobility matrix A have been introduced. The
components of A are given as

Xij (Swr, Say Su, 8, Sw) = $2S; S;[R™"1;; (16)
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in terms of the inverse of R. The mass balances (2) are combined linearly and divided by the
densities, and volume conservation (1) is applied to obtain

dSw 90w
s =0 17
S ox O (17a)
3S, 9 M
p2 0% M (17b)
ot ax Ow
38y 9 M
¢—4+& = (17¢)
ot 0x 00
3
B_(QW+ Qo) =0, (17d)
X

where Qw = Q1+ O, and Qg = QO3 + Q4. Note, that equation (17a) is identical to the transport
equation of the traditional theory and (17d) to its elliptic pressure equation as formulated in
many textbooks (Aziz and Settari 1979).

3. Hyperbolic approximation

In this section a hyperbolic limit of equation (17a) analogous to the BL theory is formulated.
The approximations lead to a fractional flow formulation in section 4.

3.1. Immobility of nonpercolating fluids

To ensure that the nonpercolating phases are immobile, it will now be assumed that
Rys > Ry, (18a)

R4s > R;j, (18b)

for all pairs (i, j) withi € {1, 2,3,4}and j € {1, 2, 3,4, 5} such that (i, j) # (2,5) and (i, j) #
(4, 5). It will also be assumed that

Rys > M, (19a)

R4s > M3 (19b)

holds. In the limit Rys — 00, R4s — o0 only the components A, A3, A31, A3z of the mobility
matrix differ from zero. Hence fluxes are approximated as

Ow =A11(0; 21+ F1)+ 1300, 23+ F3), (20a)
Qo =231(0: X1 + F1) +233(0: X3 + F3), (200)
0,=0, (20¢)
0,=0, (20d)
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where the nonzero components of the mobility matrix are explicitly given as
R3; 2

A1 (Sw, Sa, Sy, 8 Sw) = > ————S7, (21a)
11(Sw, S2, S4, 0;Sw ¢Rf3+R“R33]
A3 (Svrs Sa, Sa, 8, Sw) = A —¢2Lss (21b)
13\OW, 024 D4, O OW 31 R%3+R11R33 193,

2 Ry, 2
A33(Swy, Sz, Sa, 0:Sw) = @ (21c)

- 5
R%+ Ry Ry °

in terms of saturations. Here Onsager reciprocity Rz; = R;3 is assumed to hold for the
viscous cross-coupling. The approximation of immobile nonpercolating phases is inspired
by the residual decoupling approximation (Hilfer 2006¢). It differs from the latter, because
equations (20c) and (20d) follow from (15), and are now identically fulfilled. The approximation
may be justified physically by the observation that the motion of contact lines on the internal
surface requires capillary forces to be overcome, and this creates an additional resistance that
is much higher than the viscous drag. Note that for R;; = 0, a comparison of the mobilities in
equation (21) with mobilities of the traditional theory yields Hilfer (2006b, 2006c¢)

Ry~ el (22a)
k
Ry ~ m, (22b)

where k denotes the permeability and wyw, (g the viscosities of water and oil respectively.

3.2. Viscous domination

It is assumed that viscous drag dominates the momentum transfer such that
Ris> M, or Ri3> M, (23a)
R3s> M5 or Ri3> M; (23D)
holds true. Then the resistance matrix
R(Sw, S2, Sa, 3, Sw) = R (24)

becomes a constant matrix. The assumption is reasonable in many cases, because resistance
coefficients are typically of order 108 kg m~—3 s~! while momentum transfer due to mass transfer
is of order 10° kgm~— s~!. However, if Syy — Sw™ or 9, Sw — oo, this assumption breaks down.
Here we assume |Sw* — Sw| < 107* and 9,Sw < 1s~!. The assumption |Syw* — Syw| < 107 is
reasonable, because the saturations Sw™ and Sy are rarely known with a precision better than
10~*. The assumption on 9, Sy is justified, because the divergence resulting from shock fronts
is smeared out in experiments.

3.3. Equal pressure assumption

In many applications like oil recovery the applied pressures are large enough to neglect differ-
ences in the pressures of the two percolating phases. Here we use this observation to assume

P =P = P; (25)
New Journal of Physics 13 (2011) 123030 (http://www.njp.org/)
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and hence

T =33 (26)
for the stress tensors of the percolating phases. This is a strong assumption, which eliminates
diffusive capillary terms. The same assumption is made in the traditional BL theory (see

appendix equation (A.15)). The system becomes nonlinearly hyperbolic and shocks may occur
even for smooth initial data.

4. Model reduction and fractional mobility functions

In this section a fractional flow formulation is derived. Fractional flow and mobility functions
are identified in analogy to the BL theory (see appendix).

The approximations (18), (19), (23) and (25) are inserted into equations (17).
Equation (17d) implies that the total flux density

Ow(x, 1)+ Qolx, 1) = Q(1) 27)
is constant in the whole domain and depends only on time. Inserting equations (20) and (25)
into (27) one obtains

P O@t) —AwkF| — AoF;

Fyake ; (28)
0x Aw + Ao

where
Ay (Sw, 82, 84) = A1 + A3, (29a)
ro(Sw, S2, 84) = Az + 413 (29b)

are the mobilities of water W and oil Q. The fractional flow function fyw and the fractional
mobility A are introduced in analogy to the traditional theory (Aziz and Settari 1979,
Dullien 1992) as

Avy

Jw (Sw, 52,54):k Ty (30a)
W (@)
Aiihys — A2

WS S2. S9) = == (300)
A% 0}

The fractional mobility A is identical to the harmonic mean mobility A = Awig/(Aw + Ag), if
the viscous coupling between the percolating phases is negligible (i.e. A;3 = 0).

Inserting equations (28) and (30) into equation (17) gives a set of three coupled nonlinear
partial differential equations

0 Sw 0 0
¢——+ 00— fw+— [A(F1— F3)] =0, (3la)
dt 0x 0x
a8 M
02 __1’ (31b)
ot ow
a8S. M
p—=—— (3lc)
ot 00

for the saturations Sy, S, Ss. If the flux Q(#) is imposed externally, it is not necessary to solve
the elliptic equation (28) for the pressure, and (31) is a closed system of partial differential
equations. The problem is now reduced to finding solutions for equation (31) subject to suitable
initial and boundary conditions.
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5. General solution

To avoid overcrowding the water saturation Sy with too many indices, the index W is omitted
in the subsequent sections. From now on S represents the water saturation instead of Syy.
5.1. Method of characteristics

Inserting the body forces from equation (10) and the mass exchange terms from equations (5)
into (31) one finds

E:
§-+ - L0 fr (8, 5, S+ FG(DA(S, 5, )1 =0, (32a)
3S, S, — 8%\ 98
— = -, 32b
TR (SW* - S) o1 (325)
S, Sy — S\ 98
924 _ _ 2 32
o1 "4(SW*—S) o1 (32¢)
where
Fg(t) = (ow — 00)g sin ¥ (1) (33)

is the gravitational force. The fractional flow function fw and fractional mobility A are given
explicitly by

R33Slz+ R]3S] S3

S, S, S4) = , 34
fW( 2 4) R33S12+2R135153+R11S32 ( a)
25252 R\1R3; — R?
AS, S5, S0 = ——y P 2( s ;3) (34b)
R33Sl +2R13SIS3+R1153 R11R33+R13
with
Si(x, 1) = 8(x, 1) — Sa(x, 1), (35a)
S:(x,t)=1—S(x, 1) — S4(x, 1). (35b)
Equations (32b) and (32¢) have the solutions (Hilfer 2006c)
. o (S =S, nD\"
$1(x, 1) = 85"+ (Sx0(x) — $2%) (W—) , (36a)
Sw™ — Swo(x)
. o (SO, ) — Sy \™
Sa(x, 1) = 84"+ (Sao(x) — $4) (—W) , (36b)
Swyo(x) — Sw
where
S(x, 0) = Swo(x), (37a)
SZ(-x’ 0) - SZO(-X)7 (37b)
S4(x, 0) = S40(x) (37¢)
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are the initial conditions. The limiting saturations Sw*, S5, S} are given by equations (6). For
imbibition processes (i.e. for 9,5 > 0)

Sw*(x, 1) =1 — Sgim, (38a)

S (x, 1) =0, (38b)

S45(x, 1) = Soim (38¢)
holds, while

Sw*(x, 1) = Swar, (39a)

Sy*(x, 1) = Swar, (39b)

Sa"(x, 1) =0 (39c¢)

holds for drainage processes (i.e. for 9,5 < 0). The type of process will at times be indicated by
superscripts dr or im. Thus, Si"(x, ¢) is defined by inserting equation (38) into equation (36),
and ng(x, t) is defined by inserting equation (39) into equation (36).

Inserting equations (36) with these specifications into (32a), one finds the quasilinear
equation

aS(x,t) 0
5+ 7= G (S, 1), Swo(x), S (), Sao(x), 1) =0, (40)
where
1
G (S, Swo, $20, S40, 1) = & [Q@) fw (S, S2, Sa) + FG()A(S, S2, S1)] = G(S, x, 1) (41)

with S, = S, (S, Swo, $20) and Sy = S4(S, Swo, Ss0) defined by inserting equations (36) into (35).
The initial conditions (37) introduce an explicit x-dependence, and the parameter functions
Q(t), v (¢) an explicit r-dependence.
Differentiation of (40) leads to the equation
S 0dGaS 0G 0Swo 090G 0S5 9G 0S4
dt * a5 0x o aSW() 0x 8S20 ax 8540 0x .
The integral surface S = S(x, #) in (x, #, S)-space solving this quasilinear equation is obtained
by solving the autonomous system of ordinary differential equations

(42)

v @3a)
— =1, a
dr
dx
F 8(S(), x(1), (7)), (43D)
ds
F h(S(z), x(1), (7)) (43¢)

T

for the characteristic curves with the curve parameter t. The functions
G

S, x,t)=—, 44

8(S,x,1) 53 (44a)
G 9§ 0G 9. aG a8

h(S.x. 1) = — WO 20 40 (44b)

8SWO 0x 8S20 0x 8540 0x

are considered as functions of S, x and 7.
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The Cauchy problem for (43) consists in finding the solution S(x, t) for given data. The
data are written parametrically as

t=1(§), (45a)
x =x0(8), (45b)
S = 8(8), (45c¢)

where 1y, xo, Sy are given functions and the map [&,, £.] — R?, which maps & € [&, &,] to
(t0(&), x0(&), So(§)), is a parametrization of the Cauchy data. Integrating equations (43) from 1
to T gives

1(t,8) =1(§) +7 — 10, (46a)
x(7,§) =xO(€)+fg(S(t/),X(f’),t(f’))df', (46D)
S(z.§) =So(S)+fh(S(T/),X(T/),t(f/))df/ (46¢)

7o

with integration constants xy(§), So(§) and 7y(&) given by the problem data.

Of particular interest are data in the (x, §)-plane and their time evolution. They correspond
to the special case where 7y(§) =1, for all £ € [&,, &,] is a fixed time instant. In this case the
choice 1y = 1y leads to t = ¢. Eliminating 7 the solution at time ¢ > #, becomes

t

X(t,é)=xO(-§)+/g(S(t’),X(t/),t’)dt', (47a)

fo

t

S.8) = SuE)+ [ (@), 2.1 (47)
4}
where & € [&,, &,] is the curve parameter in the (x, §)-plane. This equation suggests that one
can interpret g as the velocity of the characteristics and /4 as the rate of change of the saturation
along a characteristic.

If the functions x (¢, -) or S(z, -) can be inverted, i.e. the equations x (¢, &) =X or (¢, &) = S
can be solved for &, at fixed ¢, then we write

S (t, [x(t, )N @) = S&, 1) =: S(x, 1), (48a)

x (1,18, )17 (S)) =x(S, 1) = x(S, 1) (48D)

by abuse of notation. The saturation profiles S(x, ¢) defined in equation (48a) may become
multivalued. Multivalued saturation profiles are physically not admissible. They indicate the
appearance of jump discontinuities in the saturation profile.
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5.2. Jump discontinuities in the saturations

Location and height of jump discontinuities in the saturation profile S(x, ¢) are obtained from
the inverse function x (S, ) defined in equation (48b). Multivaluedness of S(x, ) corresponds to
nonmonotonicity in x (S, #). Nonmonotonicity implies the appearance of local maxima x,,,x and
minima X, in x(S, 7). The problem of resolving the multivaluedness into jump discontinuities
in S(x, t) corresponds to the problem of eliminating the nonmonotonicity in x (S, 7) by inserting
constant plateaus. .

The problem is then to determine for every maximum—minimum pair (xlzi)n (1), xlﬁﬁgx (1)) the
position x@(¢), the upstream (+) and downstream (—) saturations S@(t), Sf)(t) at the jump
discontinuity, defined as (¢ > 0)

SD¢) = lim S(xD(t) —e€, 1), (49q)
SO(t) := lim Sx@ () +e, 1), (49b)
such that the conditions

xD (1) < xD(r) < xD (1), (50a)
x(SY 1) =xD), (50b)
x(SV, 1) =xD (), (50c)
590

/ x(S. HdS = xO () (Sf)(t) — S@(r)) (50d)

9@

are simultaneously fulfilled. For continuous x (S, ¢) the existence of a solution to this problem is
guaranteed by the mean value theorem. Equations (50b)—(50d) are three nonlinear equations for
the three unknowns x @ (), SJ(,i)(t), S(_i)(t). In general, the nonlinear equations have to be solved
numerically and their solutions are not unique.

Once x@ (1), S¥(r), $*)(r) are determined for each pair (x\) (1), x) (1)), single-valued
solutions are constructed by replacing x (S, t) with x®(z) for S € [Sg)(t), Sff)(t)]. If there are
several triples x©(r), S¥ (1), S (¢) solving equations (50b)—(50d) the replacement of x (S, 1)
for S € [SP (1), S¥(1)] by xO(¢) is repeated for all triples until S(x, #) becomes single valued
in the whole domain.

The position x@(¢) of the discontinuity (shock) is time dependent because of mass
conservation. Its time-dependent shock speed v®(r) is determined from the so-called
(Rankine—Hugoniot) jump condition

Y8 0,n -GV, 0

@) — - - 51
v SP(0)—s9() o
where
GO (S, 1) :=1im G (S. Suo(x (1) =€), Sa(x (1) =€), Suox V(1) =€), 1), (52a)
GY(S,1):=1im G (S, Swo(x (1) +), SV (0) +€), Sa0(x V() +€), 1) (525)

where € > 0 are the limiting upstream (+) and downstream (—) flux functions.
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5.3. Spatial discontinuities in the flux function

A second type of (immobile) discontinuity (suspended shocks) may appear if the initial
conditions Syyo(x), S»(x), S4o(x) are discontinuous. Consider a point x = x9 in space at which
at least one initial saturation ;o with i € {W, 2, 4} is discontinuous. Now equation (42) does
not apply at x = x¢ and the function (S, x, t) in equation (44b) is not defined.

Mass conservation, expressed in (51), degenerates into flux continuity, because the left-
hand side vanishes. Setting the left-hand side in equation (51) to zero requires the condition

G_(84(1), 1) = G(S{(1), 1), (53)
to hold at all times # > 0. Now the limiting flux functions are defined as

G_(S,1):=1lim G (S, Swo(x =€), Sa(x* =€), Sw(x* =€), 1), (54a)

Go(S,1) :=1im G (S, Swo(x* +€), S (x"+€), Sw(x’ +¢), 1) (54b)
with € > 0 and the limiting saturations are defined as

$2(r) :=lim S(x" — €, 1), (55a)

S4t) = lim S(xd+e, 1), (55b)

Equation (53) is an implicit nonlinear condition for the limiting saturations S¢(z) and Sf(t).
Depending on the monotonicity of the flux functions it may be fulfilled by more than one pair
of limiting saturations. In section 7 spatial discontinuities in monotone flux functions are solved.

6. Initial conditions, boundary values and other data

6.1. Generalized Buckley—Leverett (BL) problem with and without flow reversal

The BL frontal advance theory refers to a hyperbolic approximation, which has become popular,
because of its simplicity and versatility in petrophysical applications (Lake 1989). One considers
a one-dimensional homogeneous porous medium of infinite extent that is oriented perpendicular
to gravity (% = 0 in equation (33)) so that

Fo=0 (56)
holds.
The initial conditions for the BL problem are specified parametrically as (see equation (47))
£, for £ <0,
x(t9, &) = x0(8) = 1 0, for 0<&<1, (57a)
§—1, for £>1,
Sie, for & <0,
Si(to, &) = Sio(§) = { Sie +(Sir = Si)§, for 0<E<, (57b)
Sir, for é.: > 1,

wherei =W, 2,47

3 Other parametrizations for S;(t, £) are possible and we assume here that the results are independent of the
parametrization.

New Journal of Physics 13 (2011) 123030 (http://www.njp.org/)


http://www.njp.org/

15 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Table 1. The model parameters from Hilfer (2006c) used in the calculations
here. Following Hilfer (2006b) the viscous resistances R;;, R3; correspond to
uw = o = 0.001 kgm~!s~! and a permeability of k = 2.05 x 10712 m?.

Parameter Value Units
m 4 -
N4 3 -
SOim 0.19 -
Sw dr 0.15 -
Ry 5.886 x 107  kgm3s7!
Rz 5.886 x 107  kgm3s7!
Ri3 0.0 kgm—3s~!
P 0.347 _

Qo 4.0 pums™!
g 9.81 ms~2
ow 1000 kgm~?
00 800 kgm™3

The boundary conditions at the left and right limits are

lim S;(x,t) = lim S;o(x) =S,,, (58a)
lim S;(x,t)= lim S;o(x)=S;, (58b)

where i =W, 2, 4.
The medium is flooded with the flux protocol

Q@) =(1-206(—1))Qo, (59)

where Qo > 0 and ¢, is the instant at which the flow is reversed. Solutions are to be calculated
fort e [ty, T]withty <t <T.

6.2. Parameter data

In order to provide a basis for a comparison with experiments, some model parameters have been
obtained by fitting to experimental data in Hilfer (2006b). These are listed in table 1. Values for
the viscous resistances were not needed in Hilfer (2006b), because only stationary and quasi-
stationary solutions were considered there. Realistic values for viscosities and permeabilities
are pw = o = 0.001kgm~'s™! and k=2.05x 10~">m?. Following equations (22) this
corresponds to viscous resistances Rj; = R3; = 5.886 x 10" kgm=3s~!. The viscous coupling
is assumed to occur only between the fluids and the solid, but not between different fluids,
so that Rj3=0, Ri4=0, Ry3=0. The method presented here is not restricted to this
situation. Including viscous fluid—fluid coupling produces different fronts also ranging from
pure rarefactions to pure shocks.

Similar to the traditional theory, the fractional flow function fy and the fractional mobility
A in equation (41) are only functions of S. In contrast to the traditional theory however,
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Figure 1. Fractional flow functions fw and their derivatives dfyw/dSw as
functions of saturation Sw. Primary imbibition is shown as solid curves,
secondary imbibition as dashed curves, primary drainage as dash-dotted curves,
and secondary drainage as dotted curves. Arrows indicate the direction of the
process.

an infinity of scanning curves is simultaneously available without requiring newly parametrized
Sfw or A.

Figure 1 shows graphs of fyw and their derivatives for the four characteristic processes
of the hysteresis loop. Primary imbibition is shown as solid curves, secondary imbibition as
dashed curves. Primary drainage curves are dash—dotted and secondary drainage curves are
dotted. Arrows indicate the direction of the process. The monotonicity of fy is crucial for
finding unique solutions in the next section.

7. Generalized BL frontal advance

In this section the general solution obtained in section 5 with the method of characteristics is
applied to solve the initial and boundary value problem from section 6, which is similar to
the familiar BL problem (Buckley and Leverett 1942). To do so, we need to discuss spatial
disccontinuities in the flux function.
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7.1. Prerequisite: spatial discontinuities in monotone flux functions

The initial conditions (57) for the BL problem* introduce a spatial discontinuity at x = x¢ =0
of the type discussed in section 5.3. This requires us to discuss the solution of equation (53) at
x = x9 before discussing the solution on the full domain. The absence of gravitational forces,
equation (56), for the BL problem yields monotone flux functions as in figure 1, and this
simplifies the discussion considerably.

With the initial conditions the limiting flux functions and their derivatives are G_(S) =
Gi(S), G+(S) = G+(S), 8-(S5) = g¢(S), and g.(S) = g,(S), where

Go(S) :=G(S, Sy, Sz, Sae), (60a)
G,(S):=G(S, S, Sar, Sar), (60b)
8e(S) :=g(S, S¢, S2¢, Sae)s (60c)
8-(8) :=g(S. S, Sar, Sar) (60d)

are given functions. Limiting initial conditions Sy_, Sy, are defined in analogy to (55) and are
given as So_ = S, and Sp, = S,.

The model distinguishes drainage and imbibition. This requires us to distinguish the two
limits of the derivatives of the flux functions G;(S) with i € {+, —} at Sy; as

im _ ; 8G"(s +x) 61a)
M= lim —— (S, , a
&i x—0 08 0i T X

3G,
& — lim —(So; — 61b
8 Xlg}) 8S(o X) (61b)

with x > 0 at both sides of the spatial discontinuity. The limit Sp; + x is applied for imbibition
processes and the limit Sp; — x for drainage processes. In general the two limits gi™ # g differ.

Figure 2 illustrates the functions from equations (60). The upper graph shows the constant
initial data S, S, for the saturation in the two subdomains separated by a discontinuity. The
flux functions G,(S), G,(S) are shown in the center of the figure. They are monotone and
continuous, but not differentiable. The fluxes at the initial saturations Sy, S, are marked by
circles. The lower graph shows the partial derivatives g,(S), g,(S). Note that the two limiting
values of g,, g, at the initial saturations S, and S, are different.

With these preparations the solutions of equation (53) can be obtained. Because gravity
is absent, the flux functions are monotonically increasing for ¢ < ¢,, and hence the slopes
g-(S) >0, g.(S,) >0 are positive. As a result, all characteristics with initial saturation
S(x,t=0)=2S5, arrive at x® from the left (i.e. from the region x < x%). The characteristics
with initial saturation S(x,t =0) =S, on the other hand also move to the right and cannot
reach the spatial discontinuity at x9. It follows that §¢ = S, for all times. Given SY = S,, the
constraint (53) yields an implicit nonlinear equation

G.(S)=G_(So) (62)

for §. It has a unique solution, because the flux functions G_(S), G.(S) are monotone in S. Its
solution yields the right saturation Sﬂ of the spatial discontinuity as Sﬂ = G;l (G_(Sp)).

4 For simplicity, constant initial saturations S;, Sz¢, Sa¢ for x < x4 and S,, Sy, Say for x > x4 at both sides of
the spatial discontinuity are discussed here. Nonconstant initial saturation profiles introduce a time dependence in
S = 89(1), S = SY(¢). This time dependence requires additional considerations but does not introduce conceptual
difficulties. Furthermore, it is assumed that the flux functions do not explicitly depend on time. Again, relaxing this
constraint requires additional considerations but does not introduce conceptual difficulties.
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Figure 2. Illustration of a spatial discontinuity for monotone flux functions.
The upper graph shows the constant initial saturations S(x < x9,7 =1, = S,
and S(x > x%, 1 =1;) = S,. The graph in the middle shows the flux functions
G¢(S) and G,(S). The lower graph shows their partial derivatives g,(S) and
g-(S). Values at the initial saturations S, S, are shown as circles.

Figure 3 illustrates the construction of solutions at the spatial discontinuity for
characteristics with positive slopes. The figure illustrates also the jump discontinuity resulting
from equations (50) for the parameters chosen as an example. Dashed curves show G_(S) and
g-(S), dash—dotted curves show G.(S) and g,(S). Open circles show values at S, and S,.

The flux functions G are shown in the upper part of the figure. The open circle on the
dashed curve marks the point (Sy, G_(S;)). At the spatial discontinuity the flux GY = G_(S,)
has to be conserved because of equation (53). It is indicated by a dotted horizontal line in
the upper figure. This line intersects the dash—dotted flux function G.(S) for the right side at
(89, G,(8Y)). The intersection point is indicated by the filled circle. The initial flux in the right
domain is shown as an open circle on the dash—dotted curve. The jump discontinuity is shown
by a straight dotted line connecting its upstream value at §“ = §¢ and its downstream value
at S\ = S,. The line of the jump discontinuity almost coincides with the curve of the flux
function. For clarity a conceptual picture is given as an inset on the left. The second inset on the
right shows a conceptual picture of the imbibition and drainage branch of G_ at S,.

The solution in the vicinity of the spatial discontinuity x¢ may graphically be constructed
using the lower part of figure 3. This part of the figure shows the partial derivatives g_(S),
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Figure 3. Illustration of the construction of solutions at the spatial discontinuity
for monotone flux functions and the discontinuity obtained from equation (53).
Dashed curves show G _(S) and g_(S), dash—dotted ones show G, (S) and g.(S).
Open circles show values at Sy and S,. Open diamonds show the two values at
g-(S,) and the plus symbol shows the drainage limit of gfr(Sr). The values at
S¢ are illustrated by filled circles. Filled squares show the values at the jump
discontinuity. The left inset shows a conceptual picture of the jump discontinuity
and the right inset illustrates schematically the drainage and imbibition branch
of G_ at ;. The gray area illustrates constraint (50d) for the jump discontinuity.

The dotted horizontal line in the upper figure shows the flux at the spatial
discontinuity G9.

2+(S). The open diamonds on the dashed curve illustrate the values of the two limits g9 (S,)
and g™(S,). It is not possible to assign a single value to g_(S;), because the saturation at the
left side of the spatial discontinuity does not change with time and hence neither imbibition nor
drainage takes place there. The filled circle shows (Sf, g+(Sf)). The upstream value g+(S<_S))
and the downstream value g+(SfLS)) of the jump discontinuity are depicted as squares and are
connected by a dotted line. The equal area construction given in equation (50d) is illustrated by
the two gray regions. The region above the dotted line has the same area as the region below
it. The open circle on the dash—dotted curve illustrates g'™(S,), the irrelevant drainage value

g¥(S,) is shown as a plus symbol. The corresponding saturation profile is illustrated below in
figure 4, where also the general solution is derived.
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2 [m]

Figure 4. Illustration of the various segments of the saturation profile
corresponding to the flux functions illustrated in figure 3. The saturation profile
is depicted as a thick solid line. The vertical line indicates the discontinuity in the
initial conditions. Thin dotted curves conceptually show g[l and g~'. Important
values are shown by the same symbols as in figure 3.

7.2. Advancing flow

With these preparations it is now possible to solve the BL initial and boundary value problem
formulated in section 6.1. The initial conditions (57) are inserted into equations (41) and (44).
In this section the case ¢ < ¢, is discussed. The case ¢ > ¢, is addressed in the next section.

For t < t, the flux is constant and positive Q () = Qy > 0 and G is independent of ¢

G(S.x.1) = G,(S), forx <O, (63)
U TNG6,8),  forx >0,
where the short forms G,(S)=G(S, S¢, Soe, S4¢) and G,(S)=G(S, S,, S, S4) are

introduced. Its derivative g with respect to S, defined in (44a), reads

ge(S), forx <0,

g (§), forx>0

in obvious notation. Inserting the piecewise constant initial data (57) into equation (44b) yields
h(S,x,t)=0, forx#0. (65)

At the spatial discontinuity x = 0 the saturations are related by equation (53). The derivative
g(S,x,t) > 0 is positive for all S € [0, 1], for all x € R and for all 7 € [1y, #,]. Following the
previous section 7.1 the saturations at the spatial discontinuity are S¢ = S, and S¢ is determined
by equation (62).

The parametrized Cauchy data (57) at time #y, = 0 are now used to calculate the solution.
Inserting this into equation (47) yields for £ <0

g(S,x,t):{ (64)

& +18u(Sp), fort <t7(§),

X(I’S)_{tgr (89).  fort > (), (66a)
S, fort <17 (8),

S(t’g)_{sf, fort > t*(£), (660)

where t*(§) := —&/g_(S,) denotes the time when x(¢*(£),&) = 0.
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For 0 < & < 1 the result is

x(t,&)=1g (SI+(S, —59)¢), (67a)

S(t, &) =S +(S, — 89 &. (67b)
For & > 1 it reads as

x(t,§) =& —1+1g(S), (68a)

S(t, &) =S,. (68b)

If saturation profiles S(x, ) become multivalued, shocks are determined by equation (50). For
the problem at hand the number of shocks is zero or one. A shock is denoted (i) = (s) when
occurring. The shock occurs in the domain x > 0, because in the region x < O the saturation
is constant for all time. The downstream saturation value of the shock SJ(,S) = S, and the
upstream saturation RE independent of time, because of the initial conditions (57). Inserting
this into equation (67a) the position of the shock becomes x® (¢) = rv® with v® = gr(S(f)).
Inserting this and equations (66)—(68) into (50) one obtains an implicit equation for the upstream
saturation S® at the Jjump discontinuity

j tg,(S)dS = 1 (G,(S,) ~G, (S(_S))) —tg, <S(_S)> (S, _ S(_S)). (69)
s©

Dividing equations (66a), (67a) and (68a) by ¢ it becomes apparent that the saturation
S(x, t) is self-similar in x /¢ and reads

S(, )?C<0,
X SS’ 0<f<g,(Sf),
S(x, t =S(—)= i 70
0= =10 0), b ()<t < g )
S, g (S9) <%,

Figure 4 shows a conceptual picture of the solution at an instant . The saturation profile is
depicted as a thick solid line. The spatial discontinuity in the initial conditions is indicated
by a vertical line. Thin dotted curves conceptually show g, ' and g~!. Characteristic values are
illustrated by the same symbols that were used in figure 3. The figure illustrates how the constant
saturation at the left is connected via a jump at the spatial discontinuity and a rarefaction shock
with the constant saturation at the right.

Several displacement processes are discussed below. Table 2 lists the initial conditions used
for the displacement processes which are illustrated in figures 5 and 6. Characteristic values of
the solutions to these problems are summarized in table 3. The parameters are listed in table 1
above.

Figure 5(a) shows a primary imbibition process. A primary imbibition is a displacement
of the nonwetting fluid by the wetting fluid in a completely dry porous medium. The initial
saturations for the primary process hence are Sy = 1 and S, = 0. The initial saturations of the
nonpercolating phases are Sy, =0, S5, =0, S4¢ =0, and Sy, = 0. The figure shows the initial
saturation jump at x =0 as a dashed line. After r = 15d a water shock front has invaded
the porous medium and has reached x® (15d) =22.23 m. It is followed by a rarefaction fan
spanning the interval between x = 0 and the shock front. During the displacement the oil phase
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Table 2. Initial values for displacement processes illustrated in figures 5 and 6.
Figure 5(a) Figure 5(b) Figure 7(a) Figure 7(b) Figure 6

Se 1.00 0.81 0.60 0.60 0.70
Soe 0 0 0.138 0.00 0.03
Sae 0 0.19 0.00 0.189 0.15
S, 0 0.15 0.60 0.60 0.20
Sor 0 0.15 0.00 0.138 0.13
Sar 0 0 0.189 0.00 0.02

Table 3. Characteristic values of the solutions to the initial and boundary value
problems of figures 5 and 6. No values for the shock are given for figure 7(b),
because the solution is a pure rarefaction. The values of S¢ are calculated by
equation (53), of % from (69), of Sésj from (36a), of S from (36b) and

v® = g,(S(f)). Some of the characteristic quantities are indicated in figure 7(a).

Figure 5(a) Figure 5(b) Figure 7(a) Figure 7(b) Figure 6
54 0.810 0.810 0.519 0.659 0.664 0.693 0.662
s® 0.582 0.544 0.519 - 0.525 0.610 0.456
s 0.000 0.004 0.068 - 0.006 0.043 0.001
s 0.186 0.178 0.085 - 0.173 0.134 0.189
v® /(m/d) 1.482 2.005 4.001 - 2272 2.007 2.400
1 1 T
08 r E 08F E
"F o8} E "F 06} E
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Figure 5. Saturation profiles for the BL problem. Figure (a) shows profiles
for a primary imbibition process and figure (b) shows profiles for a secondary
imbibition process. Profiles are shown at t = 15d as solid curves. The initial
conditions are listed in table 2 and depicted as dashed lines. Note, that some
curves coincide with the x-axis.

may break up and nonpercolating oil remains immobile in the medium. The water phase remains
continuous, because it is invading.

Figure 5(b) shows a secondary imbibition process. A secondary imbibition is a
displacement of the nonwetting fluid by the wetting fluid in a medium containing only
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Figure 6. Saturation profiles for the BL problem. The figure shows a comparison
of profiles for different mass exchange parameters 1,, n4 for a secondary
imbibition at ¢ = 15d. Solid curves represent saturation profiles for n, =4,
n4 = 3, dashed curves for n, = 1, n, = 1 and dotted curves for 1, = 10, n4 = 10.
The initial conditions are listed in table 2.

irreducible water at the beginning. Hence the initial conditions are S, = 1 — Sgim, S = Swar,
S0 =0, S5 = Swar, Sa¢ = Soim, and Sy = 0. The figure shows the initial conditions as dashed
lines. After + = 15d a water shock front has invaded the porous medium and has reached
x®(15d) =30.07m. It is followed by a rarefaction fan. During the displacement the oil
phase eventually breaks up and nonpercolating oil remains trapped inside the medium. The
nonpercolating water phase on the other hand coalesces with the invading percolating water
phase.

A comparison of both results shows that the shock of the secondary imbibition process
is significantly faster than the one of the primary process whereas the shock height is a little
bit smaller. See table 3 for numerical values. The higher velocity is due to the coalescence
of initially present nonpercolating water with the imbibing percolating water. The coalescence
increases the mobility Aw and the flux Qw of the water.

Figure 6 illustrates the influence of the mass exchange efficiency parameters 1,, 14 on
the saturation profiles. A comparison of profiles for different 7,, 14 in a secondary imbibition
process is shown. Solid curves represent saturation profiles for 1, =4, n4 = 3, dashed curves
for n, =1, ny =1 and dotted curves for n, = 10, ny = 10. The other parameters are chosen
identical to the preceding examples. The parameters 1, n4 significantly change shock velocities
v® and shock heights $®. For larger 1,, n4 the shock velocities are larger. The shock heights
are correspondingly smaller, because the total fluid volume is conserved. These solutions have
also been checked numerically using an adaptive moving grid algorithm (Doster 2011).

Figures 7(a) and (b) show two different displacement processes in a homogeneous porous
medium with constant initial water saturations. The subdomains x < 0 and x > 0 differ only
in the ratio between percolating and nonpercolating phases, but their total water saturation
Sw 1s identical. Initially Sy = 0.6 in the whole domain. In figure 7(a) the region x < 0 has
been prepared through a primary drainage, while x > 0 has been prepared through a primary
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Figure 7. Saturation profiles for a BL-type problem with constant initial water
saturation S = 0.6 in the whole domain. Both subdomains x < 0 and x > 0 differ
only in the ratio between percolating and nonpercolating phases. Figure (a)
shows profiles for initial conditions where the left domain has been prepared
through a primary drainage and the right domain through a primary imbibition.
Figure (b) shows profiles for mirror reflected initial conditions, i.e. the left
domain is prepared through a primary imbibition and the right domain through
a primary drainage. Numerical values are listed in table 2. Initial conditions are
depicted as dashed lines and profiles at t = 15d as solid lines.

imbibition. In figure 7(b) the initial conditions are mirror reflected. The initial conditions are
depicted as dashed lines and solutions at ¢t = 15d as solid lines.

When water is injected from the left one finds S¢ < S, in figure 7(a). Thus, a drainage
shock is moving from the left to the right, reaching x® (15d) = 60.02 m after ¢ = 15d. Drainage
occurs, because on the left side (x < 0) the amount of mobile, i.e. percolating, water is less than
on the right side. The water flux Qw on the left is less than the flux at the right side, and the
water flux which is required for a constant water saturation in the right side is not provided by
the left side. The opposite holds true for figure 7(b). Here the higher water flux from the left
side leads to an increase of the water saturation at the right S¢ > S, and an imbibition wave is
propagating into the right domain. It is a pure rarefaction. Both examples illustrated in figure 7
differ from and go beyond the traditional theory, where the saturation would remain unchanged
at its initial value Sw = 0.6 throughout the whole domain.

7.3. Reversed flow

We emphasize that our extended theory predicts hysteresis. This will be illustrated here by
reversing the flow, i.e.

Qt>1)=—-0@ <1,)=-0o (71)

at a time instant 7.. Hence, the front will move back and the character of the process changes
locally. An imbibition now becomes a drainage and a drainage becomes an imbibition. Contrary
to the traditional theory, the full hysteresis loop and all scanning curves are automatically
contained in our extended theory. An imbibition followed by a drainage will be discussed below
without loss of generality. For drainage followed by imbibition only the wording has to be
changed accordingly.
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The solution profiles S(x,t.), S>(x, ), S4(x, t,) given in equation (70) are the initial
conditions for the reversed flow problem. For ¢ > ¢, the domain is generally divided into four
domains. The left domain x < 0 is denoted by an index £. The second domain 0 < x < ¢, g,(Sf)
is denoted by an index c, because the saturation at t = ¢, is constant there. The third domain
t,g,(Sf) <x <x9(t) corresponds to the rarefaction of solution (70) at ¢ =¢,.. It will be
denoted by an index m. The right domain x > x®(z,) will be denoted by an index r. Assuming
t, = 15d and the initial conditions 6 from table 2 the solid curves in figure 6 show the initial
conditions for a reversed flow. Then the domains are £ : x € [—00,0]m, ¢: x € [0, 11.68]m,
m:xe€[11.68,34.08)mand r : x € [34.08, oco]m.

The saturations in £, ¢ and r are constant at ¢t = t,. Hence, the flux functions G,, G., G, do
not explicitly depend on x and sources in the quasilinear partial differential equation (42) are
absent so that

hy=0, forx <O,
h(S,x, )= L h.=0, for0 <x <1,g (59, (72)
h, =0, forx>x®(,)

holds. The current flows from right to left and thus the saturation
S(x,t) =S, (73)

is constant for all # > ¢, and x > x®(¢,). At x = x®(¢,) there is a discontinuity in the initial
conditions because of the shock. This leads to a second discontinuity in the flux function which
is denoted by a superscript ds.

The constraint (53) holds at the spatial discontinuity and g(S§, x) < 0 for all S € [0, 1], for
all x € R and for all ¢ € [#,, T]. Following section 7.1 the saturations at the spatial discontinuity
are S =S, and S_ is the solution of equation (62) with S¢ = S,. The interface at x =1, g,(S%)
does not require special treatment and the spatial discontinuity at x = 0 in the initial conditions
is due to the spatial discontinuity in the flux functions during the frontal advancement for ¢ <z,
and is treated analogously. In the region called m a source term is appearing in the quasilinear
partial differential equation (42)

h(S,x,t) =h,(S,x)#0 (74)

for ¢, gr(Sf) <x <x9() and t>t. The solution of the advancing flow (70) is now
parametrized with the parameter § € R as

§+1, for& < —1,
18- (SH(1—§), for —1 <& <0,

x0(§) = 1 18- (ST +(SY — $DHE), for0<E <1, (75a)
xO(,), for 1 <& <2,
£E—Q2-x9(@)), for§ > 2,

and

Se, foré < —1,
Sf, for — 1 <€ <0,

So(E) = 1 89+ (59 — 59, for0 <& <1, (75b)
SO+ (SI0—s9) € -1, forl<g<2,
Sy, for& >2
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Figure 8. Saturation profiles for the BL problem with flow reversal. Figure (a)
shows the injection of water until ¢ = ¢, = 15d. Figure (b) shows the reversed
flow from ¢ = 15d until + = 30d. Each graph shows the corresponding initial
profiles as dashed lines. Solid lines represent profiles at equidistant times
At =3d.

to specify the Cauchy data at time ¢ = ¢,. Inserting this into equation (47) again yields solutions
for the different parameter domains.

In contrast to the previously discussed Riemann problem, the initial conditions for the
drainage are not homogeneous and an analytical solution is not obvious. However, the set
of ordinary differential equations (43) can be solved numerically. We chose an adaptive
Runge—Kutta method of fifth respectively fourth order provided within the software package
MATLAB as ode45 (Dormand and Prince 1980).

The solution in (x,¢, S)-space may yield a multivalued function S(x,?). The
multivaluedness is resolved by equations (50). Here equations (50) are solved numerically by a
bisection method.

As an example, a secondary imbibition followed by a drainage is illustrated in figure 8.
Note, that in this case S¢ =S, and g,(5¢) = 0. The domain ¢ shrinks to a point x = x®(z,).
Figure 8(a) shows profiles at equidistant time steps for ¢ <t,. The dashed profiles are the
initial conditions. Figure 8(b) shows profiles at equidistant time steps for ¢ > ¢.. The dashed
profiles correspond to ¢ =¢,. The time step between adjacent profiles in both subfigures is
At=3d=t/5.

For 0 <t < t, the current flows from left to right. For x < 0 m the saturation is constant and
for x > O m a secondary imbibition process takes place. For t > ¢, the current is reversed and
flows from right to left. A rarefaction shock then propagates from right to left. Contrary to before
the saturation Sf) (1) ahead of the shock is not spatially constant. The upstream saturation s® (1)
behind the shock and the velocity v® (¢) are also changing with time. When the shock returns to
x = 0.0m it turns into a standard rarefaction shock, whose shock velocity, up- and downstream
saturations are the constant values of a secondary drainage. If one wanted to treat this problem
with the traditional theory, this would require an infinite number of different scanning curves
(in the domain m). This is not the case for our theory.

Figure 9 illustrates the reversed flow solution by showing projections of selected
characteristics in (x, f, S)-space onto the (x, S)-plane (figure 9(a)) and onto the (x, ¢)-plane
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Figure 9. Illustration of selected characteristics of figure 8(b). Figure (a) shows
the projection of the characteristics onto the (x, S)-plane. The crosses correspond
to stationary characteristics in that plane. Figure (b) shows the projection of the
characteristics onto the (x, 7)-plane. The characteristics are shown as solid and
dashed curves. The dotted curves are cross sections perpendicular to the time
axis at equidistant time steps At = 3d.

(figure 9(b)). The characteristics are shown as solid and dashed curves. The characteristics
of initial conditions with S(&,¢,) =1 — Spim and S(&, t,) = Swq, are parallel to the time axis
and hence correspond to points in the (x, §)-plane and straight lines in the (x, #)-plane. In
domain m (x € [0.0m, 30.01 m]) the saturation changes along a characteristic. Figure 9(a)
shows this explicitly. It is only shown implicitly in figure 9(b) by curvatures of the characteristics
different from 0. The dotted curves are cross sections perpendicular to the time axis at
equidistant time steps Ar = 3d. In the (x, S)-plane these correspond to the profiles shown in
figure 8 without resolving the multivaluedness. Intersections of characteristics in the (x, f)-
plane indicate multiple values at one spatial point x. In both subfigures, projections of the same
characteristics are depicted. To facilitate the identification of the corresponding characteristic
curve, three characteristic curves are drawn as dashed curves in each subfigure.

8. Conclusion

The present paper contributes to the long-standing open problem of formulating a macroscopic
hydrodynamic theory of capillary hysteresis and fluid entrapment in porous media. Wider
implications of our results beyond physical fluid dynamics and wetting in porous media concern
nonequilibrium physics, where hysteresis and memory effects are ubiquitous, but poorly
understood phenomena. Mathematically, our work provides analytical and numerical solutions
for systems of nonlinear partial differential equations. Moreover, our results are important for
many applications, such as enhanced oil recovery, CO,-sequestration, fuel cells, soil physics, or
hydrology.

In summary, this paper has advanced the traditional, 70-year-old, widely used BL theory
for two-phase flow in porous media by taking into account the differences of percolating and
nonpercolating fluid parts. The mathematical model is based on extending the state space by
two additional saturations and velocities. A fractional flow formulation of the extended theory
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was given. A hyperbolic limit of the extended theory can be formulated by assuming immobile
nonpercolating phases and equal pressures for the percolating fluid phases. The method of
characteristics was applied in this limit to solve the BL problem. Because of hysteresis, the
initial and boundary value problem gives rise to spatially discontinuous flux functions, even for
homogeneous media.

The solutions of the generalized BL problem show significant differences of shock heights
and speeds between primary and secondary processes. It was found that mass exchange
parameters influence the velocities and heights of the shocks. It was further shown that even
though the initial water saturation is constant, drainage and imbibition waves may form due
to differences in the hysteresis loop. The ability to switch dynamically between drainage and
imbibition processes within our extended theory permits solutions also for reversed flow. The
extended theory does not require different parameter sets to treat all these cases. Drainage and
imbibition curves do not have to be selected in advance. This is essential for many experimental
and technological displacement processes, where it is impossible to know the processes from
the outset.
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Appendix. Traditional BL theory

For the benefit and convenience of the general reader we briefly recall traditional BL theory.
The material in this appendix is not new (see e.g. Buckley and Leverett (1942), Aziz and
Settari (1979), Chen et al (2006), Hilfer (2006b, 2006c)). We emphasize the close analogy
between traditional BL theory and our generalization.

A.1. Macroscopic phase structure

The pore space is called P, the matrix is called M, and the sample is S = P U M. The traditional
macroscopic theory distinguishes two phases: a wetting phase, called water and denoted W, and
a nonwetting phase, called oil and denoted O. The microscopic fluid configuration (on the pore
scale) is not resolved, and the phases W and O are viewed as being simultaneously present at
each macroscopic position x.

A.2. Balance laws for mass, momentum and volume

The traditional theory starts from the fundamental balance laws of continuum mechanics for
water W and oil Q. The law of mass balance in differential form reads (cf. equation (2))
9(¢i0i)
ot
where Q;(x, 1), ¢;(x, 1), v;(x,t) denote mass density, volume fraction and velocity of phase
i =W, O as functions of position x € S C R? and time ¢ € R,. The mass transfer rates M; give

+V - (gioiv;) = M; (A.1)
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the amount of mass by which phase i changes per unit time and volume. They can be used to
model mass sources or chemical reactions.
Momentum balance for the two fluids requires in addition (analogously to equation (7))
i

D
¢iQiEvi_¢iv'2i_¢iFi =m; —v; M;, (A.2)

where %; is the stress tensor in the ith phase. F; is the body force per unit volume acting
on the ith phase, m; is the momentum transfer into phase i from all the other phases, and
D' /Dt = 9/9t +v; - V denotes the material derivative for phase i = W, Q.

Defining the saturations S;(x, ¢) as the volume fraction of pore space P filled with phase i
one has the relation ¢; = ¢S; where ¢ is the porosity of the sample. Expressing volume
conservation ¢w + ¢ = ¢ in terms of saturations yields (analogously to equation (1))

Sw+So = 1. (A.3)

In order to get the traditional theory these balance laws for mass, momentum and volume have
to be combined with specific constitutive assumptions for M;, m;, F; and %;.

A.3. General constitutive assumptions
As a first approximation it is usually assumed that the porous medium has a solid, ideally rigid
matrix that is also macroscopically homogeneous (analogous to equation (3))

¢(x,1t) = ¢ = const (A4)

although this assumption can be relaxed, and rarely holds in practice (Hilfer and Helmig 2004).
Let us further assume that the fluids are incompressible so that (analogous to equation (4))

ow(x, 1) = ow, (A.5a)
Q(O)(.X', t) = 00> (ASb)

where the constants oy, 0o are independent of x and ¢. One assumes next that the stress tensor
of the fluids is diagonal (see equations (9a) and (9¢))

Yo =—Fol (A.6b)

where Py, Pg are the fluid pressures. Realistic subsurface flows have low Reynolds numbers so
that (analogously to equation (8)) the inertial term
D 0 (A.7)
—V; = .
Dt

can be neglected in the momentum balance equation (7). It is further assumed that the body
forces

Fo =008 (A.8b)

are given by gravity (as in equation (10) with ¢ = 7r/2). As long as there are no sources or sinks
and no chemical reactions between the fluids, the mass transfer rates vanish, so that

My =0= Mg (A9)
holds.

New Journal of Physics 13 (2011) 123030 (http://www.njp.org/)


http://www.njp.org/

30 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT
A.4. Viscous drag

Momentum transfer between the fluids and the rigid walls of the porous medium is assumed to
be governed by viscous drag in the form (analogously to equation (11))

W Py
_ ’ A.10
My K (Su) Uw (A.10a)
no ¢
___Ho% A.10b
O Tk Sy ° (A-100)

where pw, no are the constant fluid viscosities, k is the absolute permeability, and
ki (Sw), ko (Sw) are the so-called relative permeabilities functions of water and oil. Note that
these functions are in general nonlinear, and partly responsible for the nonlinearities of the
theory.

A.5. Capillarity

Inserting the constitutive assumptions into the general balance laws (A.1)—(A.3) yields nine
equations for ten unknowns Sy, So, Pw Po, Vw, Vo. An additional equation is needed. Based on
observations of capillary rise in regular packings (Smith et al 1931) it was argued in Leverett
(1941) that the pressure difference between oil and water should, in general, depend only upon
saturation

Pg — Py = owok (Sw) = P.(Sw), (A.11)

where oyyg is the oil-water interfacial tension and « (Sy) is the mean curvature of the oil-water
interface. This assumption has remained the cornerstone of the theory of macroscopic capillarity
for 60 years, and it is being challenged here. The nonlinear constitutive parameter function
P.(Sw) is called the capillary pressure-saturation relation and it is supposed to describe the
macroscopic effect of capillarity in hydrostatic equilibrium (without flow).

A.6. Ad hoc assumptions

The functions P.(Sw) and kg (Sw), kp(Sw) are treated as constitutive functions that are
supposed to represent ‘rock properties’ (see e.g. chapter 3 in Chen etr al (2000)). It is well
known, however, that these functions are not intrinsic constitutive parameters, but depend on
time, position, fluid configurations, and on the type of flow process. Technically, they are fit
functions that are chosen freely to approximate direct or inverse experiments. Fit functions can
often be subsumed under the general form

P.(Sw) =P} S, — PF(1— 827", (A.124)

Koy (Sw) = Ko, T S [S25 +aw (1= 82)7] 7", (A.12b)

Ko (Sw) = ki (1= S)™ [S2 +ap (1—80)™" ], (A.12¢)
where S, is the effective saturation defined by

S, = % (A.13)
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and PI, P¥ ki, ki)', aw, ag, Swi, Sor and vy, ..., vy are 19 parameters. Different forms using
logarithms or exponential functions have also been proposed. The parameters depend on the
type of displacement process. Frequently the number of parameters is reduced on the basis of
observations as well as calculations for capillary tube models. A popular choice for primary
drainage assumes Sp, = 0, Pf =0, aw =0, ap =0, vs =0, v9 =0 leaving seven parameters
free.

A.7. BL approximation
The BL approximation firstly neglects gravity
Fw=0, (A.14a)
Fo=0. (A.14D)
Secondly, it ignores capillarity effects by assuming that (analogous to equation (25))
Py = Py (A.15)

and hence P.(Sw) =0 holds®. This assumption is justified by practitioners in petroleum
engineering by the argument that capillary phenomena are negligible on large scales of
hectometers or kilometers.

Combining all these assumptions allows one to formulate the theory as an elliptic equation
for the pressure plus the so-called BL equation (Buckley and Leverett 1942)

0 Sw 0
¢p——+ Q) — fr(Sw) =0 (A.16)
ot ax
(in one dimension) for the water saturation, where
Mok (Sw)
JfoL(Sw) = — - (A.17)
BT Lokl (Sw) + kg (Sw)
is the BL fractional flow function. The total volume flux (analogous to equation (27))
Ow(x, 1)+ Qo(x, 1) = 0(1) (A.18)

is independent of position and assumed to be given as a function of time (usually constant). The
BL equation is a nonlinear partial differential equations. Smooth initial data may evolve into a
shock front.
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