Problem Sheet 5 Solid State Theory Summer Semester 2021

Fakultät für Physik, Universität Stuttgart

Prof. Dr. R. Hilfer

Problem 1)

(4 Points)

Indium antimonide has the energy gap $E_g = 0.23 \text{ eV}$, the dielectric constant $\epsilon = 18$ and the electron effective mass $m_e = 0.015 \text{ m}$.

- (a) Calculate the donor ionization energy.
- (b) Calculate the radius of the ground state orbit.
- (c) At what minimum donor concentration will appreciable overlap effects between the orbits of adjacent impurity atoms occur?

This overlap tends to produce an impurity band - a band of energy levels which permit conductivity presumably by a hopping mechanism in which electrons move from one impurity site to a neighboring ionized impurity site.

Problem 2)

Consider the energy surface

$$\epsilon(\vec{k}) = \hbar^2 \left(\frac{k_x^2 + k_y^2}{2m_t} + \frac{k_z^2}{2m_l} \right), \tag{1}$$

where m_t is the transverse mass parameter and m_l is the longitudinal mass parameter. A surface on which $\epsilon(\vec{k})$ is constant will be a spheroid. Use the equation of motion, Equation (6) from Lecture 8, with $\vec{v} = \hbar^{-1} \nabla_{\vec{k}} \epsilon$, to show that $\omega_c = eB/(m_l m_t)^{1/2} c$ where $B = |\vec{B}|$ when the static magnetic field \vec{B} lies in the *x-y*-plane.

Problem 3)

An open orbit in a monovalent tetragonal metal connects opposite faces of the boundary of a Brillouin zone. The faces are separated by $G = 2 \times 10^8 \,\mathrm{cm^{-1}}$. A magnetic field $B = 10 \times 10^3 \,\mathrm{gauss} = 1 \times 10^{-1}$ tesla is normal to the plane of the open orbit.

- (a) What is the order of magnitude of the period of the motion in \vec{k} space? Take $v \approx 1 \times 10^8 \,\mathrm{cm \, s^{-1}}$.
- (b) Describe in real space the motion of an electron on this orbit in the presence of the magnetic field.

(4 Points)

(4 Points)