Problem Sheet 1
 Solid State Theory
 Summer Semester 2021
 Fakultät für Physik, Universität Stuttgart
 Prof. Dr. R. Hilfer

Problem 1)

(4 Points)
The primitive translation vectors of a hexagonal space lattice may be specified as

$$
\begin{aligned}
& \vec{a}_{1}=(\sqrt{3} a / 2) \vec{e}_{x}+(a / 2) \vec{e}_{y} \\
& \vec{a}_{2}=-(\sqrt{3} a / 2) \vec{e}_{x}+(a / 2) \vec{e}_{y} \\
& \vec{a}_{3}=c \vec{e}_{z}
\end{aligned}
$$

(a) Show that the volume of the primitive unit cell is $(\sqrt{3} / 2) a^{2} c$.
(b) Show that the primitive translation vectors of the reciprocal lattice are

$$
\begin{aligned}
& \vec{b}_{1}=(2 \pi / \sqrt{3} a) \vec{e}_{x}+(2 \pi / a) \vec{e}_{y}, \\
& \vec{b}_{2}=-(2 \pi / \sqrt{3} a) \vec{e}_{x}+(2 \pi / a) \vec{e}_{y}, \\
& \vec{b}_{3}=(2 \pi / c) \vec{e}_{z} .
\end{aligned}
$$

(c) Describe and sketch the first Brillouin zone of the hexagonal space lattice.

Problem 2)

(4 Points)
Prove that the ideal c / a ratio for the hexagonal close-packed structure is $\sqrt{8 / 3}$.

Problem 3)

(4 Points)
Show that the volume of the first Brillouin zone is $(2 \pi)^{3} / V_{c}$ where V_{c} is the volume of a crystal primitive cell.

