Übungsblatt 6

Relativitätstheorie I

Wintersemester 2019/20 Fakultät für Physik, Universität Stuttgart Prof. Dr. R. Hilfer

Aufgabe 1) (4 Punkte)

Beweisen Sie: Ist $\Gamma_{\mu\nu}a^{\mu}b^{\nu}$ für beliebige Vierervektoren a^{ν}, b^{ν} ein Skalar, dann ist $\Gamma_{\mu\nu}$ ein Vierertensor.

Aufgabe 2) (4 Punkte)

Lorentz-Transformationen erfüllen $g_{\mu\nu}=g_{\rho\lambda}\Lambda^{\rho}_{\mu}\Lambda^{\lambda}_{\mu}$, wobei $g_{\mu\nu}$ der metrische Tensor ist. Zeigen Sie, daß ein Skalar der Form $A_{\mu}B^{\mu}$ Lorentz-invariant ist, indem Sie die obige Definition der Lorentz-Transformation explizit anwenden.

Aufgabe 3) (4 Punkte)

Definieren Sie die Vierergeschwindigkeit $u^{\mu}(\tau) := \mathrm{d}x^{\mu}/\mathrm{d}\tau(\tau)$, mit τ der Eigenzeit, und beweisen Sie, daß $u^{\mu}(\tau)$ für festes τ ein Vierervektor ist. Berechnen Sie das Skalarprodukt der Vierergeschwindigkeit u^{μ} mit sich selbst. Welches Vorzeichen hat $u_{\mu}u^{\mu}$?