Publications

Publications of the Institute

ICP Publications

  1. 2021

    1. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01586-2
    2. Itto, Y. (2021). Fluctuating Diffusivity of RNA-Protein Particles: Analogy with Thermodynamics. Entropy, 23(3), 333. https://doi.org/10.3390/e23030333
    3. Itto, Y., & Beck, C. (2021). Superstatistical modelling of protein diffusion dynamics in bacteria. Journal of The Royal Society Interface, 18(176), Article 176. https://doi.org/10.1098/rsif.2020.0927
    4. Bauer, M., Eibl, S., Godenschwager, C., Kohl, N., Kuron, M., Rettinger, C., Schornbaum, F., Schwarzmeier, C., Thönnes, D., Köstler, H., & Rüde, U. (2021). waLBerla: A block-structured high-performance framework for multiphysics simulations. Computers & Mathematics with Applications, 81, 478--501. https://doi.org/10.1016/j.camwa.2020.01.007
    5. Atanasova, P., Dou, M., Kousik, S. R., Bill, J., & Fyta, M. (2021). Adsorption of azide-functionalized thiol linkers on zinc oxide surfaces. RSC Adv., 11(10), 5466–5478. https://doi.org/10.1039/D0RA05127F
    6. Carral, Á. D., Ostertag, M., & Fyta, M. (2021). Deep learning for nanopore ionic current blockades. The Journal of Chemical Physics, 154(4), 044111. https://doi.org/10.1063/5.0037938
    7. Tagliabue, A., Landsgesell, J., Mella, M., & Holm, C. (2021). Can oppositely charged polyelectrolyte stars form a gel? A simulational study. Soft Matter. https://doi.org/10.1039/D0SM01617A
    8. Lee, M., Lohrmann, C., Szuttor, K., Auradou, H., & Holm, C. (2021). The influence of motility on bacterial accumulation in a microporous channel. Soft Matter. https://doi.org/10.1039/D0SM01595D
    9. Kreissl, P., Holm, C., & Weeber, R. (2021). Frequency-dependent magnetic susceptibility of magnetic nanoparticles in a polymer solution: a simulation study. Soft Matter, 17(1), 174–183. https://doi.org/10.1039/D0SM01554G
  2. 2020

    1. Hilfer, R., & Kleiner, T. (2020). Maximal Domains for Fractional Derivatives and Integrals. Mathematics, 8(7), 1107. https://doi.org/10.3390/math8071107
    2. Kleiner, T., & Hilfer, R. (2020). Convolution operators on weighted spaces of continuous functions and supremal convolution. Annali Di Matematica Pura Ed Applicata (1923 -), 199(4), 1547--1569. https://doi.org/10.1007/s10231-019-00931-z
    3. Maier, F. C., & Fyta, M. (2020). Functionalized Nanogap for DNA Read-Out: Nucleotide Rotation and Current-Voltage Curves. ChemPhysChem, 21(18), 2068--2074. https://doi.org/10.1002/cphc.202000391
    4. Sarap, C. S., Putra, M. H., & Fyta, M. (2020). Domain-size effect on the electronic properties of two-dimensional $MoS_2/WS_2$. Phys. Rev. B, 101(7), 075129. https://doi.org/10.1103/PhysRevB.101.075129
    5. Breitsprecher, K., Janssen, M., Srimuk, P., Mehdi, B. L., Presser, V., Holm, C., & Kondrat, S. (2020). How to speed up ion transport in nanopores. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-19903-6
    6. Tovey, S., Krishnamoorthy, A. N., Sivaraman, G., Guo, J., Benmore, C., Heuer, A., & Holm, C. (2020). DFT Accurate Interatomic Potential for Molten NaCl from Machine Learning. The Journal of Physical Chemistry C, 124(47), 25760--25768. https://doi.org/10.1021/acs.jpcc.0c08870
    7. Landsgesell, J., Hebbeker, P., Rud, O., Lunkad, R., Kosovan, P., & Holm, C. (2020). Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules, 53(8), 3007--3020. https://doi.org/10.1021/acs.macromol.0c00260
    8. Tischler, I., Schlaich, A., & Holm, C. (2020). The Presence of a Wall Enhances the Probability for Ring-Closing Metathesis: Insights from Classical Polymer Theory and Atomistic Simulations. Macromolecular Theory and Simulations, 2000076. https://doi.org/10.1002/mats.202000076
    9. Zeman, J., Kondrat, S., & Holm, C. (2020). Bulk ionic screening lengths from extremely large-scale molecular dynamics simulations. Chem. Commun., 56(100), 15635–15638. https://doi.org/10.1039/D0CC05023G
    10. Landsgesell, J., Sean, D., Kreissl, P., Szuttor, K., & Holm, C. (2020). Erratum: Modeling Gel Swelling Equilibrium in the Mean Field: From Explicit to Poisson-Boltzmann Models Phys. Rev. Lett. 122, 208002 (2019). Phys. Rev. Lett., 124(11), 119901. https://doi.org/10.1103/PhysRevLett.124.119901
    11. Sánchez, P. A., Vögele, M., Smiatek, J., Qiao, B., Sega, M., & Holm, C. (2020). PDADMAC/PSS Oligoelectrolyte Multilayers: Internal Structure and Hydration Properties at Early Growth Stages from Atomistic Simulations. Molecules, 25(8), 1848. https://doi.org/10.3390/molecules25081848
    12. Sivaraman, G., Krishnamoorthy, A. N., Baur, M., Holm, C., Stan, M., Csányi, G., Benmore, C., & Vázquez-Mayagoitia, Á. (2020). Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide. Npj Computational Materials, 6(1), Article 1. https://doi.org/10.1038/s41524-020-00367-7
  3. 2019

    1. Hilfer, R., & Luchko, Y. (2019). Desiderata for Fractional Derivatives and Integrals. Mathematics, 7(2), 149. https://doi.org/10.3390/math7020149
    2. Hilfer, R. (2019). Excess wing physics and nearly constant loss in glasses. Journal of Statistical Mechanics: Theory and Experiment, 2019(10), 104007. https://doi.org/10.1088/1742-5468/ab38bc
    3. Maier, F. C., Hocker, S., Schmauder, S., & Fyta, M. (2019). Interplay of structural, electronic, and transport features in copper alloys. Journal of Alloys and Compounds, 777, 619--626. https://doi.org/10.1016/j.jallcom.2018.10.340
    4. de Souza, F. A. L., Sivaraman, G., Hertkorn, J., Amorim, R. G., Fyta, M., & Scopel, W. L. (2019). Hybrid 2D nanodevices (graphene/h-BN): selecting NOx gas through the device interface. J. Mater. Chem. A, 7(15), 8905–8911. https://doi.org/10.1039/C9TA00674E
    5. Hertkorn, J., & Fyta, M. (2019). Electronic features of vacancy, nitrogen, and phosphorus defects in nanodiamonds. Electronic Structure, 1(2), 025002. https://doi.org/10.1088/2516-1075/ab177b
    6. Sarap, C. S., Partovi-Azar, P., & Fyta, M. (2019). Enhancing the optical detection of mutants from healthy DNA with diamondoids. J. Mater. Chem. B, 7(21), 3424–3430. https://doi.org/10.1039/C9TB00122K
    7. Chen, G., Liu, W., Widenmeyer, M., Ying, P., Dou, M., Xie, W., Bubeck, C., Wang, L., Fyta, M., Feldhoff, A., & Weidenkaff, A. (2019). High flux and CO2-resistance of La0.6Ca0.4Co1–Fe O3- oxygen-transporting membranes. Journal of Membrane Science, 590, 117082. https://doi.org/10.1016/j.memsci.2019.05.007
    8. Carral, A. D., Sarap, C. S., Liu, K., Radenovic, A., & Fyta, M. (2019). 2D MoS2 nanopores: ionic current blockade height for clustering DNA events. 2D Materials, 6(4), 045011. https://doi.org/10.1088/2053-1583/ab2c38
    9. Dou, M., Maier, F. C., & Fyta, M. (2019). The influence of a solvent on the electronic transport across diamondoid-functionalized biosensing electrodes. Nanoscale, 11(30), 14216–14225. https://doi.org/10.1039/C9NR03235E
    10. Partovi-Azar, P., Sarap, C. S., & Fyta, M. (2019). In silico Complexes of Amino Acids and Diamondoids. ChemPhysChem, 20(17), 2166--2170. https://doi.org/10.1002/cphc.201900394
    11. Schleicher, M., & Fyta, M. (2019). Lateral MoS2 Heterostructure for Sensing Small Gas Molecules. ACS Applied Electronic Materials, 2(1), 74--83. https://doi.org/10.1021/acsaelm.9b00495
    12. Arens, L., Barther, D., Landsgesell, J., Holm, C., & Wilhelm, M. (2019). Poly(sodium acrylate) hydrogels: synthesis of various network architectures, local molecular dynamics, salt partitioning, desalination and simulation. Soft Matter, 15(48), 9949–9964. https://doi.org/10.1039/C9SM01468C
    13. Zeman, J., Holm, C., & Smiatek, J. (2019). The Effect of Small Organic Cosolutes on Water Structure and Dynamics. Journal of Chemical & Engineering Data, 65(3), 1197--1210. https://doi.org/10.1021/acs.jced.9b00577
    14. Roy, T., Szuttor, K., Smiatek, J., Holm, C., & Hardt, S. (2019). Conformation and Dynamics of Long-Chain End-Tethered Polymers in Microchannels. Polymers, 11(3), 488. https://doi.org/10.3390/polym11030488
    15. Landsgesell, J., & Holm, C. (2019). Cell Model Approaches for Predicting the Swelling and Mechanical Properties of Polyelectrolyte Gels. Macromolecules, 52(23), 9341--9353. https://doi.org/10.1021/acs.macromol.9b01216
    16. Weik, F., Weeber, R., Szuttor, K., Breitsprecher, K., de Graaf, J., Kuron, M., Landsgesell, J., Menke, H., Sean, D., & Holm, C. (2019). ESPResSo 4.0 -- an extensible software package for simulating soft matter systems. The European Physical Journal Special Topics, 227(14), 1789--1816. https://doi.org/10.1140/epjst/e2019-800186-9
    17. Kuron, M., Stärk, P., Burkard, C., de Graaf, J., & Holm, C. (2019). A lattice Boltzmann model for squirmers. The Journal of Chemical Physics, 150(14), 144110. https://doi.org/10.1063/1.5085765
    18. Kuron, M., Stärk, P., Holm, C., & de Graaf, J. (2019). Hydrodynamic mobility reversal of squirmers near flat and curved surfaces. Soft Matter, 15(29), 5908–5920. https://doi.org/10.1039/C9SM00692C
    19. Weik, F., Szuttor, K., Landsgesell, J., & Holm, C. (2019). Modeling the current modulation of dsDNA in nanopores -- from mean-field to atomistic and back. The European Physical Journal Special Topics, 227(14), 1639--1655. https://doi.org/10.1140/epjst/e2019-800189-3
    20. Holm, C., Ertl, T., Schmauder, S., Kästner, J., & Gross, J. (2019). Particle methods in natural science and engineering. The European Physical Journal Special Topics, 227(14), 1493--1499. https://doi.org/10.1140/epjst/e2019-900008-2
    21. Lee, M., Szuttor, K., & Holm, C. (2019). A computational model for bacterial run-and-tumble motion. The Journal of Chemical Physics, 150(17), 174111. https://doi.org/10.1063/1.5085836
  4. 2018

    1. Sarap, C. S., Adhikari, B., Meng, S., Uhlig, F., & Fyta, M. (2018). Optical Properties of Single- and Double-Functionalized Small Diamondoids. The Journal of Physical Chemistry A, 122(14), 3583--3593. https://doi.org/10.1021/acs.jpca.7b12519
    2. Cruz-León, S., Vázquez-Mayagoitia, A., Melchionna, S., Schwierz, N., & Fyta, M. (2018). Coarse-Grained Double-Stranded RNA Model from Quantum-Mechanical Calculations. The Journal of Physical Chemistry B, 122(32), 7915--7928. https://doi.org/10.1021/acs.jpcb.8b03566
    3. Sarap, C. S., Partovi-Azar, P., & Fyta, M. (2018). Optoelectronic Properties of Diamondoid-DNA Complexes. ACS Applied Bio Materials, 1(1), 59--69. https://doi.org/10.1021/acsabm.8b00011
    4. Soni, H. R., & Fyta, M. (2018). Two-Dimensional Metallic/Semiconducting MoS2 under Biaxial Strain. ACS Applied Nano Materials, 1(10), 5562--5570. https://doi.org/10.1021/acsanm.8b01085
    5. Liu, D., & Fyta, M. (2018). Hybrids made of defective nanodiamonds interacting with DNA nucleobases. Nanotechnology, 30(6), 065601. https://doi.org/10.1088/1361-6528/aaf127
    6. Hilfer, R. (2018). Multiscale local porosity theory, weak limits, and dielectric response in composite and porous media. Journal of Mathematical Physics, 59(10), 103511. https://doi.org/10.1063/1.5063466
    7. Kuron, M., Kreissl, P., & Holm, C. (2018). Toward Understanding of Self-Electrophoretic Propulsion under Realistic Conditions: From Bulk Reactions to Confinement Effects. Accounts of Chemical Research, 51(12), 2998--3005. https://doi.org/10.1021/acs.accounts.8b00285
    8. Uhlig, F., Zeman, J., Smiatek, J., & Holm, C. (2018). First-Principles Parametrization of Polarizable Coarse-Grained Force Fields for Ionic Liquids. Journal of Chemical Theory and Computation, 14(3), 1471--1486. https://doi.org/10.1021/acs.jctc.7b00903
To the top of the page