Publications

Publications of the Institute

A complete list of publications you can find here

ICP Publications

  1. 2022

    1. Wang, W., Gardi, G., Malgaretti, P., Kishore, V., Koens, L., Son, D., Gilbert, H., Wu, Z., Harwani, P., Lauga, E., Holm, C., & Sitti, M. (2022). Order and information in the patterns of spinning magnetic micro-disks at the air-water interface. Science Advances, 8(2), Article 2. https://doi.org/10.1126/sciadv.abk0685
  2. 2021

    1. Finkbeiner, J., Tovey, S., & Holm, C. (2021). Efficient Data Selection Methods for the Development of Machine Learned Potentials. ArXiv, abs/2108.01582.
    2. Zeman, J., Kondrat, S., & Holm, C. (2021). Ionic screening in bulk and under confinement. The Journal of Chemical Physics, 155(20), 204501. https://doi.org/10.1063/5.0069340
    3. Szuttor, K., Kreissl, P., & Holm, C. (2021). A numerical investigation of analyte size effects in nanopore sensing systems. The Journal of Chemical Physics, 155(13), 134902. https://doi.org/10.1063/5.0065085
    4. Szuttor, K., Weik, F., Grad, J.-N., & Holm, C. (2021). Modeling the current modulation of bundled DNA structures in nanopores. The Journal of Chemical Physics, 154(5), 054901. https://doi.org/10.1063/5.0038530
    5. Kuron, M., Stewart, C., de Graaf, J., & Holm, C. (2021). An extensible lattice Boltzmann method for viscoelastic flows: complex and moving boundaries in Oldroyd-B fluids. The European Physical Journal E, 44(1), Article 1. https://doi.org/10.1140/epje/s10189-020-00005-6
    6. Riede, J. M., Holm, C., Schmitt, S., & Haeufle, D. F. B. (2021). The control effort to steer self-propelled microswimmers depends on their morphology: comparing symmetric spherical versus asymmetric              L              -shaped particles. Royal Society Open Science, 8(9), Article 9. https://doi.org/10.1098/rsos.201839
    7. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01586-2
    8. Itto, Y. (2021). Fluctuating Diffusivity of RNA-Protein Particles: Analogy with Thermodynamics. Entropy, 23(3), 333. https://doi.org/10.3390/e23030333
    9. Itto, Y., & Beck, C. (2021). Superstatistical modelling of protein diffusion dynamics in bacteria. Journal of The Royal Society Interface, 18(176), Article 176. https://doi.org/10.1098/rsif.2020.0927
    10. Bauer, M., Eibl, S., Godenschwager, C., Kohl, N., Kuron, M., Rettinger, C., Schornbaum, F., Schwarzmeier, C., Thönnes, D., Köstler, H., & Rüde, U. (2021). waLBerla: A block-structured high-performance framework for multiphysics simulations. Computers & Mathematics with Applications, 81, 478--501. https://doi.org/10.1016/j.camwa.2020.01.007
    11. Atanasova, P., Dou, M., Kousik, S. R., Bill, J., & Fyta, M. (2021). Adsorption of azide-functionalized thiol linkers on zinc oxide surfaces. RSC Adv., 11(10), 5466–5478. https://doi.org/10.1039/D0RA05127F
    12. Carral, Á. D., Ostertag, M., & Fyta, M. (2021). Deep learning for nanopore ionic current blockades. The Journal of Chemical Physics, 154(4), 044111. https://doi.org/10.1063/5.0037938
    13. Tagliabue, A., Landsgesell, J., Mella, M., & Holm, C. (2021). Can oppositely charged polyelectrolyte stars form a gel? A simulational study. Soft Matter. https://doi.org/10.1039/D0SM01617A
    14. Lee, M., Lohrmann, C., Szuttor, K., Auradou, H., & Holm, C. (2021). The influence of motility on bacterial accumulation in a microporous channel. Soft Matter. https://doi.org/10.1039/D0SM01595D
    15. Kreissl, P., Holm, C., & Weeber, R. (2021). Frequency-dependent magnetic susceptibility of magnetic nanoparticles in a polymer solution: a simulation study. Soft Matter, 17(1), 174–183. https://doi.org/10.1039/D0SM01554G
  3. 2020

    1. de Souza, F. A. L., Sivaraman, G., Fyta, M., Scheicher, R. H., Scopel, W. L., & Amorim, R. G. (2020). Electrically sensing Hachimoji DNA nucleotides through a hybrid graphene/h-BN nanopore. Nanoscale, 12(35), 18289–18295. https://doi.org/10.1039/D0NR04363J
    2. Dou, M., & Fyta, M. (2020). Lithium adsorption on 2D transition metal dichalcogenides: towards a descriptor for machine learned materials design. J. Mater. Chem. A, 8(44), 23511–23518. https://doi.org/10.1039/D0TA04834H
    3. Hilfer, R., & Kleiner, T. (2020). Maximal Domains for Fractional Derivatives and Integrals. Mathematics, 8(7), 1107. https://doi.org/10.3390/math8071107
    4. Kleiner, T., & Hilfer, R. (2020). Convolution operators on weighted spaces of continuous functions and supremal convolution. Annali Di Matematica Pura Ed Applicata (1923 -), 199(4), 1547--1569. https://doi.org/10.1007/s10231-019-00931-z
    5. Maier, F. C., & Fyta, M. (2020). Functionalized Nanogap for DNA Read-Out: Nucleotide Rotation and Current-Voltage Curves. ChemPhysChem, 21(18), 2068--2074. https://doi.org/10.1002/cphc.202000391
    6. Sarap, C. S., Putra, M. H., & Fyta, M. (2020). Domain-size effect on the electronic properties of two-dimensional $MoS_2/WS_2$. Phys. Rev. B, 101(7), 075129. https://doi.org/10.1103/PhysRevB.101.075129
    7. Breitsprecher, K., Janssen, M., Srimuk, P., Mehdi, B. L., Presser, V., Holm, C., & Kondrat, S. (2020). How to speed up ion transport in nanopores. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-19903-6
    8. Tovey, S., Krishnamoorthy, A. N., Sivaraman, G., Guo, J., Benmore, C., Heuer, A., & Holm, C. (2020). DFT Accurate Interatomic Potential for Molten NaCl from Machine Learning. The Journal of Physical Chemistry C, 124(47), 25760--25768. https://doi.org/10.1021/acs.jpcc.0c08870
    9. Landsgesell, J., Hebbeker, P., Rud, O., Lunkad, R., Kosovan, P., & Holm, C. (2020). Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules, 53(8), 3007--3020. https://doi.org/10.1021/acs.macromol.0c00260
    10. Tischler, I., Schlaich, A., & Holm, C. (2020). The Presence of a Wall Enhances the Probability for Ring-Closing Metathesis: Insights from Classical Polymer Theory and Atomistic Simulations. Macromolecular Theory and Simulations, 2000076. https://doi.org/10.1002/mats.202000076
    11. Zeman, J., Kondrat, S., & Holm, C. (2020). Bulk ionic screening lengths from extremely large-scale molecular dynamics simulations. Chem. Commun., 56(100), 15635–15638. https://doi.org/10.1039/D0CC05023G
    12. Landsgesell, J., Sean, D., Kreissl, P., Szuttor, K., & Holm, C. (2020). Erratum: Modeling Gel Swelling Equilibrium in the Mean Field: From Explicit to Poisson-Boltzmann Models Phys. Rev. Lett. 122, 208002 (2019). Phys. Rev. Lett., 124(11), 119901. https://doi.org/10.1103/PhysRevLett.124.119901
    13. Sánchez, P. A., Vögele, M., Smiatek, J., Qiao, B., Sega, M., & Holm, C. (2020). PDADMAC/PSS Oligoelectrolyte Multilayers: Internal Structure and Hydration Properties at Early Growth Stages from Atomistic Simulations. Molecules, 25(8), 1848. https://doi.org/10.3390/molecules25081848
  4. 2019

    1. Hilfer, R., & Luchko, Y. (2019). Desiderata for Fractional Derivatives and Integrals. Mathematics, 7(2), 149. https://doi.org/10.3390/math7020149
    2. Hilfer, R. (2019). Excess wing physics and nearly constant loss in glasses. Journal of Statistical Mechanics: Theory and Experiment, 2019(10), 104007. https://doi.org/10.1088/1742-5468/ab38bc
    3. Maier, F. C., Hocker, S., Schmauder, S., & Fyta, M. (2019). Interplay of structural, electronic, and transport features in copper alloys. Journal of Alloys and Compounds, 777, 619--626. https://doi.org/10.1016/j.jallcom.2018.10.340
    4. de Souza, F. A. L., Sivaraman, G., Hertkorn, J., Amorim, R. G., Fyta, M., & Scopel, W. L. (2019). Hybrid 2D nanodevices (graphene/h-BN): selecting NOx gas through the device interface. J. Mater. Chem. A, 7(15), 8905–8911. https://doi.org/10.1039/C9TA00674E
    5. Hertkorn, J., & Fyta, M. (2019). Electronic features of vacancy, nitrogen, and phosphorus defects in nanodiamonds. Electronic Structure, 1(2), 025002. https://doi.org/10.1088/2516-1075/ab177b
    6. Sarap, C. S., Partovi-Azar, P., & Fyta, M. (2019). Enhancing the optical detection of mutants from healthy DNA with diamondoids. J. Mater. Chem. B, 7(21), 3424–3430. https://doi.org/10.1039/C9TB00122K
    7. Chen, G., Liu, W., Widenmeyer, M., Ying, P., Dou, M., Xie, W., Bubeck, C., Wang, L., Fyta, M., Feldhoff, A., & Weidenkaff, A. (2019). High flux and CO2-resistance of La0.6Ca0.4Co1–Fe O3- oxygen-transporting membranes. Journal of Membrane Science, 590, 117082. https://doi.org/10.1016/j.memsci.2019.05.007
    8. Carral, A. D., Sarap, C. S., Liu, K., Radenovic, A., & Fyta, M. (2019). 2D MoS2 nanopores: ionic current blockade height for clustering DNA events. 2D Materials, 6(4), 045011. https://doi.org/10.1088/2053-1583/ab2c38
    9. Dou, M., Maier, F. C., & Fyta, M. (2019). The influence of a solvent on the electronic transport across diamondoid-functionalized biosensing electrodes. Nanoscale, 11(30), 14216–14225. https://doi.org/10.1039/C9NR03235E
    10. Partovi-Azar, P., Sarap, C. S., & Fyta, M. (2019). In silico Complexes of Amino Acids and Diamondoids. ChemPhysChem, 20(17), 2166--2170. https://doi.org/10.1002/cphc.201900394
    11. Schleicher, M., & Fyta, M. (2019). Lateral MoS2 Heterostructure for Sensing Small Gas Molecules. ACS Applied Electronic Materials, 2(1), 74--83. https://doi.org/10.1021/acsaelm.9b00495
    12. Arens, L., Barther, D., Landsgesell, J., Holm, C., & Wilhelm, M. (2019). Poly(sodium acrylate) hydrogels: synthesis of various network architectures, local molecular dynamics, salt partitioning, desalination and simulation. Soft Matter, 15(48), 9949–9964. https://doi.org/10.1039/C9SM01468C
    13. Zeman, J., Holm, C., & Smiatek, J. (2019). The Effect of Small Organic Cosolutes on Water Structure and Dynamics. Journal of Chemical & Engineering Data, 65(3), 1197--1210. https://doi.org/10.1021/acs.jced.9b00577
    14. Roy, T., Szuttor, K., Smiatek, J., Holm, C., & Hardt, S. (2019). Conformation and Dynamics of Long-Chain End-Tethered Polymers in Microchannels. Polymers, 11(3), 488. https://doi.org/10.3390/polym11030488
  5. 2018

    1. Sarap, C. S., Adhikari, B., Meng, S., Uhlig, F., & Fyta, M. (2018). Optical Properties of Single- and Double-Functionalized Small Diamondoids. The Journal of Physical Chemistry A, 122(14), 3583--3593. https://doi.org/10.1021/acs.jpca.7b12519
    2. Cruz-León, S., Vázquez-Mayagoitia, A., Melchionna, S., Schwierz, N., & Fyta, M. (2018). Coarse-Grained Double-Stranded RNA Model from Quantum-Mechanical Calculations. The Journal of Physical Chemistry B, 122(32), 7915--7928. https://doi.org/10.1021/acs.jpcb.8b03566
    3. Sarap, C. S., Partovi-Azar, P., & Fyta, M. (2018). Optoelectronic Properties of Diamondoid-DNA Complexes. ACS Applied Bio Materials, 1(1), 59--69. https://doi.org/10.1021/acsabm.8b00011
    4. Soni, H. R., & Fyta, M. (2018). Two-Dimensional Metallic/Semiconducting MoS2 under Biaxial Strain. ACS Applied Nano Materials, 1(10), 5562--5570. https://doi.org/10.1021/acsanm.8b01085
    5. Liu, D., & Fyta, M. (2018). Hybrids made of defective nanodiamonds interacting with DNA nucleobases. Nanotechnology, 30(6), 065601. https://doi.org/10.1088/1361-6528/aaf127
    6. Hilfer, R. (2018). Multiscale local porosity theory, weak limits, and dielectric response in composite and porous media. Journal of Mathematical Physics, 59(10), 103511. https://doi.org/10.1063/1.5063466
  6. 2017

    1. Zeman, J., Uhlig, F., Smiatek, J., & Holm, C. (2017). A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Journal of Physics: Condensed Matter. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1751
To the top of the page