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CHAPTER 2

Threefold Introduction to Fractional Derivatives

[page 17, §1]

2.1. Historical Introduction to Fractional Derivatives

2.1.1. Leibniz

[17.2.1] Already at the beginning of calculus one of its founding fathers, namely G.W.
Leibniz, investigated fractional derivatives [72, 73]. [17.2.2] Differentiation, denoted as
dα (α ∈ N), obeys Leibniz’ product rule

dα(fg) = 1 dαf d0g +
α

1
dα−1f d1g +

α(α− 1)

1 · 2
dα−2f d2g + ... (2.1)

for integer α, and Leibniz was intrigued by the analogy with the binomial theorem

pα(f + g) = 1 pαf p0g +
α

1
pα−1f p1g +

α(α− 1)

1 · 2
pα−2f p2g + ... (2.2)

where he uses the notation pαf instead of fα to emphasize the formal operational analogy.

[17.3.1] Moving from integer to noninteger powers α ∈ R Leibniz suggests that "on peut
exprimer par une serie infinie une grandeur comme" dαh (with h = fg). [17.3.2] As
his first step he tests the idea of such a generalized differential quantity dαh against the
rules of his calculus. [17.3.3] In his calculus the differential relation dh = hdx implies
dx = dh/h and dh/dx = h. [17.3.4] One has, therefore, also d2h = hdx2 and generally
dαh = hdxα. [17.3.5] Regarding dαh = hdxα with noninteger α as a fractional differential
relation subject to the rules of his calculus, however, leads to a paradox. [17.3.6] Explicitly,
he finds (for α = 1/2)

dαh

dxα
=

dαh

(dh/h)α
6= h, (2.3)

where dx = dh/h was used. [17.3.7] Many decades had to pass before Leibniz’ paradox
was fully resolved.

17
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[page 18, §1]

2.1.2. Euler

[18.1.1] Derivatives of noninteger (fractional) order motivated Euler to introduce the
Gamma function [25]. [18.1.2] Euler knew that he needed to generalize (or interpolate,
as he calls it) the product 1 · 2 · ... · n = n! to noninteger values of n, and he proposed an
integral

n∏
k=1

k = n! =

1∫
0

(− log x)n dx (2.4)

for this purpose. [18.1.3] In §27-29 of [25] he immediately applies this formula to partially
resolve Leibniz’ paradox, and in §28 he gives the basic fractional derivative (reproduced
here in modern notation with Γ(n+ 1) = n!)

dαxβ

dxα
=

Γ(β + 1)

Γ(β − α+ 1)
xβ−α (2.5)

valid for integer and for noninteger α, β.

2.1.3. Paradoxa and Problems

[18.2.1] Generalizing eq. (2.5) to all functions that can be expanded into a power series
might seem a natural step, but this "natural" definition of fractional derivatives does not
really resolve Leibniz’ paradox. [18.2.2] Leibniz had implicitly assumed the rule

dαeλx

dxα
= λαeλx (2.6)

by demanding dαh = hdxα for integer α. [18.2.3] One might therefore take eq. (2.6)
instead of eq. (2.5) as an equally "natural" starting point (this was later done by Liouville
in [76, p.3, eq. (1)]), and define fractional derivatives as

dαf

dxα
=
∑
k

ck λ
α
k eλkx (2.7)

for functions representable as exponential series f(x) ∼
∑
k ck exp(λkx). [18.2.4] Regard-

ing the integral (a Laplace integral)

x−β =
1

Γ(β)

∞∫
0

e−yxyβ−1dy (2.8)

as a sum of exponentials, Liouville [76, p.7] then applied eq. (2.6) inside the integral to
find

dαx−β

dxα
=

1

Γ(β)

∞∫
0

e−yx(−y)αyβ−1dy =
(−1)αΓ(β + α)

Γ(β) xβ+α
, (2.9)
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[page 19, §0] where the last equality follows by substituting yx = z in the integral. [19.0.1] If
this equation is formally generalized to−β, disregarding existence of the integral, one finds

dαxβ

dxα
=

(−1)αΓ(−β + α)

Γ(−β)
xβ−α (2.10)

a formula similar to, but different from eq. (2.5). [19.0.2] Although eq. (2.10) agrees with
eq. (2.5) for integer α it differs for noninteger α. [19.0.3] More precisely, if α = 1/2 and
β = −1/2, then

Γ(3/2)

Γ(0)
x−1 = 0 6= i

x
√
π

=
(−1)1/2Γ(1)

Γ(1/2)
x−1 (2.11)

revealing again an inconsistency between eq. (2.5) and eq. (2.10) (resp. (2.9)).

[19.1.1] Another way to see this inconsistency is to expand the exponential function into
a power series, and to apply Euler’s rule, eq. (2.5), to it. [19.1.2] One finds (with obvious
notation)(

dα

dxα

)
(2.5)

exp(x) =

(
dα

dxα

)
(2.5)

∞∑
k=0

xk

k!
=

∞∑
k=0

xk−α

Γ(k − α+ 1)

6=
(

dα

dxα

)
(2.6)

exp(x) = exp(x) (2.12)

and this shows that Euler’s rule (2.5) is inconsistent with the Leibniz/Liouville rule (2.6).
[19.1.3] Similarly, Liouville found inconsistencies [75, p.95/96] when calculating the frac-
tional derivative of exp(λx) + exp(−λx) based on the definition (2.7).

[19.2.1] A resolution of Leibniz’ paradox emerges when eq. (2.5) and (2.6) are compared
for α = −1, and interpreted as integrals. [19.2.2] Such an interpretation was already
suggested by Leibniz himself [73]. [19.2.3] More specifically, one has

d−1ex

dx−1
= ex =

x∫
−∞

etdt 6=
x∫

0

etdt = ex − 1 =
d−1

dx−1

∞∑
k=0

xk

k!
(2.13)

showing that Euler’s fractional derivatives on the right hand side differs from Liouville’s
and Leibniz’ idea on the left. [19.2.4] Similarly, eq. (2.5) corresponds to

d−1xβ

dx−1
=
xβ+1

β + 1
=

x∫
0

yβdy. (2.14)

[19.2.5] On the other hand, eq. (2.9) corresponds to

d−1x−β

dx−1
=
x1−β

1− β
= −

∞∫
x

y−βdy =

x∫
∞

y−βdy. (2.15)
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[page 20, §0] [20.0.1] This shows that Euler’s and Liouville’s definitions differ with respect
to their limits of integration.

2.1.4. Liouville

[20.1.1] It has already been mentioned that Liouville defined fractional derivatives using
eq. (2.7) (see [76, p.3, eq.(1)]) as

dαf

dxα
=
∑
k

ck λ
α
k eλkx (2.7)

for functions representable as a sum of exponentials

f(x) ∼
∑
k

ck exp(λkx). (2.16)

[20.1.2] Liouville seems not to have recognized the necessity of limits of integration.
[20.1.3] From his definition (2.7) he derives numerous integral and series representations.
[20.1.4] In particular, he finds the fractional integral of order α > 0 as∫ α

f(x)dxα =
1

(−1)αΓ(α)

∞∫
0

f(x+ y)yα−1dy (2.17)

(see formula [A] on page 8 of [76, p.8]). [20.1.5] Liouville then gives formula [B] for
fractional differentiation on page 10 of [76] as

dαf

dxα
=

1

(−1)n−αΓ(n− α)

∞∫
0

dnf(x+ y)

dxn
yn−α−1dy, (2.18)

where n − 1 < α < n. [20.1.6] Liouville restricts the discussion to functions represented
by exponential series with λk > 0 so that f(−∞) = 0. [20.1.7] Liouville also expands the
coefficients λαk in (2.7) into binomial series

λαk = lim
h→0

1

hα
(1− e−hλk)α, λk > 0 (2.19a)

= (−1)α lim
h→0

1

hα
(1− ehλk)α, λk < 0 (2.19b)

and inserts the expansion into his defintion (2.7) to arrive at formulae that contain the rep-
resentation of integer order derivatives as limits of difference quotients (see [75, p.106ff]).
[20.1.8] The results may be written as

dαf

dxα
= lim
h→0

{
1

hα

∞∑
m=0

[
(−1)m

(
α

m

)
f(x−mh)

]}
(2.20a)

= (−1)α lim
h→0

{
1

hα

∞∑
m=0

[
(−1)m

(
α

m

)
f(x+mh)

]}
, (2.20b)
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[page 21, §0] where the binomial coefficient
(
α
m

)
is Γ(α− 1)Γ(m− 1)/Γ(α+m− 1). [21.0.1]

Later, this idea was taken up by Grünwald [34], who defined fractional derivatives as
limits of generalized difference quotients.

2.1.5. Fourier

[21.1.1] Fourier [29] suggested to define fractional derivatives by generalizing the formula
for trigonometric functions,

dα

dxα
cos(x) = cos

(
x+

απ

2

)
, (2.21)

from α ∈ N to α ∈ R. [21.1.2] Again, this is not unique because the generalization
dα

dxα
cos(x) = (−1)α cos

(
x− απ

2

)
(2.22)

is also possible.

2.1.6. Grünwald

[21.2.1] Grünwald wanted to free the definition of fractional derivatives from a special
form of the function. [21.2.2] He emphasized that fractional derivatives are integroderiva-
tives, and established for the first time general fractional derivative operators. [21.2.3] His
calculus is based on limits of difference quotients. [21.2.4] He studies the difference quo-
tients [34, p.444]

F [u, x, α, h]f =

n∑
k=0

(−1)k
(
α

k

)
f(x− kh)

hα
(2.23)

with n = (x− u)/h and calls

Dα[f(x)]x=x
x=u = lim

h→0
F [u, x, α, h]f (2.24)

the α-th differential quotient taken over the straight line from u to x [34, p.452]. [21.2.5]
The title of his work emphasizes the need to introduce limits of integration into the concept
of differentiation. [21.2.6] His ideas were soon elaborated upon by Letnikov (see [99])and
applied to differential equations by Most [89].

2.1.7. Riemann

[21.3.1] Riemann, like Grünwald, attempts to define fractional differentiation for general
classes of functions. [21.3.2] Riemann defines the n-th differential quotient of a function
f(x) as the coeffcient of hn in the expansion of f(x+ h) into integer
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[page 22, §0] powers of h [96, p.354]. [22.0.1] He then generalizes this definition to noninteger
powers, and demands that

f(x+ h) =

n=∞∑
n=−∞

cn+α(∂n+α
x f)(x) hn+α (2.25)

holds for n ∈ N, α ∈ R. [22.0.2] The factor cn+α is determined such that ∂β(∂γf) =
∂β+γf holds, and found to be 1/Γ(n+ α+ 1). [22.0.3] Riemann then derives the integral
representation [96, p.363] for negative α

∂αf =
1

Γ(−α)

x∫
k

(x− t)−α−1f(t)dt+

∞∑
n=1

Kn
x−α−n

Γ(−n− α+ 1)
, (2.26)

where k,Kn are finite constants. [22.0.4] He then extends the result to nonnegative α
by writing "für einen Werth von α aber, der ≥ 0 ist, bezeichnet ∂αf dasjenige, was aus
∂α−mf (wo m > α) durch m-malige Differentiation nach x hervorgeht,..." [96, p.341].
[22.0.5] The combination of Liouville’s and Grünwald’s pioneering work with this idea has
become the definition of the Riemann-Liouville fractional derivatives (see Section 2.2.2.1
below).

2.2. Mathematical Introduction to Fractional Derivatives

[22.1.1] The brief historical introduction has shown that fractional derivatives may be
defined in numerous ways. [22.1.2] A natural and frequently used approach starts from
repeated integration and extends it to fractional integrals. [22.1.3] Fractional derivatives
are then defined either by continuation of fractional integrals to negative order (following
Leibniz’ ideas [73]), or by integer order derivatives of fractional integrals (as suggested
by Riemann [96]).

2.2.1. Fractional Integrals

2.2.1.1. Iterated Integrals

[22.2.1] Consider a locally integrable1 real valued function f : G → R whose domain of
definition G = [a, b] ⊆ R is an interval with −∞ ≤ a < b ≤ ∞. [22.2.2] Integrating

1A function f : G → R is called locally integrable if it is integrable on all compact subsets K ⊂ G
(see eq.(B.9)).
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[page 23, §0] n times gives the fundamental formula

(Ina+ f)(x) =

x∫
a

x1∫
a

...

xn−1∫
a

f(xn) dxn...dx2dx1

=
1

(n− 1)!

x∫
a

(x− y)n−1f(y) dy, (2.27)

where a < x < b and n ∈ N. [23.0.1] This formula may be proved by induction. [23.0.2] It
reduces n-fold integration to a single convolution integral (Faltung). [23.0.3] The subscript
a+ indicates that the integration has a as its lower limit. [23.0.4] An analogous formula
holds with lower limit x and upper limit a. [23.0.5] In that case the subscript a− will be
used.

2.2.1.2. Riemann-Liouville Fractional Integrals

[23.1.1] Equation (2.27) for n-fold integration can be generalized to noninteger values of
n using the relation (n− 1)! =

∏n−1
k=1 k = Γ(n) where

Γ(z) =

1∫
0

(− log x)z−1 dx (2.28)

is Euler’s Γ-function defined for all z ∈ C.

Definition 2.1 [23.2.1] Let−∞ ≤ a < x < b ≤ ∞. [23.2.2] The Riemann-Liouville fractional
integral of order α > 0 with lower limit a is defined for locally integrable functions
f : [a, b]→ R as

(Iαa+ f)(x) =
1

Γ(α)

x∫
a

(x− y)α−1f(y) dy (2.29a)

for x > a. [23.2.3] The Riemann-Liouville fractional integral of order α > 0 with upper
limit b is defined as

(Iαb− f)(x) =
1

Γ(α)

b∫
x

(y − x)α−1f(y) dy (2.29b)

for x < b. [23.2.4] For α = 0

(I0
a+ f)(x) = (I0

b− f)(x) = f(x) (2.30)

completes the definition. [23.2.5] The definition may be generalized to α ∈ C with Reα >
0.
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[page 24, §1] [24.1.1] Formula (2.29a) appears in [96, p.363] with a > −∞ and in [76, p.8]
with a = −∞. [24.1.2] The notation is not standardized. [24.1.3] Leibniz, Lagrange and
Liouville used the symbol

∫ α [22,73,76], Grünwald wrote
∫ α

[...dxα]x=x
x=a, while Riemann

used ∂−αx [96] and Most wrote d−αa /dx−α [89]. [24.1.4] The notation in (2.29) is that
of [52,54,98,99]. [24.1.5] Modern authors also use fα [37], Iα [97], aI

α
x [94], Iαx [23],

aD
−α
x [85,91,102], or d−α/d(x− a)−α [92] instead of Iαa+

2.

[24.2.1] The fractional integral operators Iαa+, I
α
b− are commonly called Riemann-Liouville

fractional integrals [94, 98, 99] although sometimes this name is reserved for the case
a = 0 [85]. [24.2.2] Their domain of definition is typically chosen as D(Iαa+) = L1([a, b])
or D(Iαa+) = L1

loc([a, b]) [94,98,99]. [24.2.3] For the definition of Lebesgue spaces see the
Appendix B. [24.2.4] If f ∈ L1([a, b]) then (Iαa+ f) ∈ L1([a, b]) and (Iαa+ f)(x) is finite for
almost all x. [24.2.5] If f ∈ Lp([a, b]) with 1 ≤ p ≤ ∞ and α > 1/p then (Iαa+ f)(x) is
finite for all x ∈ [a, b]. [24.2.6] Analogous statements hold for (Iαb− f)(x) [98].

[24.3.1] A short table of Riemann-Liouville fractional integrals is given in Appendix 1.
[24.3.2] For a more extensive list of fractional integrals see [24].

2.2.1.3. Weyl Fractional Integrals

[24.4.1] Examples (2.5) and (2.6) or (A.2) and (A.3) show that Definition 2.1 is well suited
for fractional integration of power series, but not for functions defined by Fourier series.
[24.4.2] In fact, if f(x) is a periodic function with period 2π, and3

f(x) ∼
∞∑

k=−∞

ckeikx (2.31)

then the Riemann-Liouville fractional (Iαa+ f) will in general not be periodic. [24.4.3] For
this reason an alternative definition of fractional integrals was investigated by Weyl [124].

[24.5.1] Functions on the unit circle G = R/2πZ correspond to 2π-periodic functions on
the real line. [24.5.2] Let f(x) be periodic with period 2π and such that the integral of f
over the interval [0, 2π] vanishes, so that c0 = 0 in eq. (2.31). [24.5.3] Then the integral of
f is itself a periodic function, and the constant of integration can be chosen such that the
integral over [0, 2π] vanishes again. [24.5.4] Repeating the integration n times one finds
using (2.6) and the integral representation

2 Some authors [23,26,85,91,92,97] employ the derivative symbol D also for integrals, resp. I for
derivatives, to emphasize the similarity between fractional integration and differentiation. If this is done,
the choice of Riesz and Feller, namely I, seems superior in the sense that fractional derivatives, similar
to integrals, are nonlocal operators, while integer derivatives are local operators.

3The notation ∼ indicates that the sum does not need to converge, and, if it converges, does not
need to converge to f(x).
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[page 25, §0] ck = (1/2π)
∫ 2π

0
e−iksf(s)ds of Fourier coefficients

∞∑
k=−∞

ck
eikx

(ik)n
=

1

2π

2π∫
0

f(y)

∞∑
k=−∞
k 6=0

eik(x−y)

(ik)n
dy (2.32)

with c0 = 0. [25.0.1] Recall the convolution formula [132, p.36]

(f ∗ g)(t) =
1

2π

2π∫
0

f(t− s)g(s)ds =

∞∑
k=−∞

fkgkeikt (2.33)

for two periodic functions f(t) ∼
∑∞
k=−∞ fkeikt and g(t) ∼

∑∞
k=−∞ gkeikt. [25.0.2] Using

eq. (2.33) and generalizing (2.32) to noninteger n suggests the following definition. [94,
99].

Definition 2.2 [25.1.1] Let f ∈ Lp(R/2πZ), 1 ≤ p <∞ be periodic with period 2π and such
that its integral over a period vanishes. [25.1.2] The Weyl fractional integral of order α is
defined as

(Iα± f)(x) = (Ψα
± ∗ f)(x) =

1

2π

2π∫
0

Ψα
±(x− y)f(y)dy, (2.34)

where

Ψα
±(x) =

∞∑
k=−∞
k 6=0

eikx

(±ik)α
(2.35)

for 0 < α < 1.

[25.2.1] It can be shown that the series for Ψα
±(x) converges and that the Weyl definition

coincides with the Riemann-Liouville definition [133]

(Iα+ f)(x) =
1

Γ(α)

x∫
−∞

(x− y)α−1f(y) dy, (2.36a)

respectively

(Iα− f)(x) =
1

Γ(α)

∞∫
x

(y − x)α−1f(y) dy (2.36b)

for 2π periodic functions whose integral over a period vanishes. [25.2.2] This is eq. (2.29)
with a = −∞ resp. b =∞. [25.2.3] For this reason the Riemann-Liouville
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[page 26, §0] fractional integrals with limits ±∞, Iα+ f = Iα(−∞)+ f and Iα− f = Iα∞− f , are
often called Weyl fractional integrals [24,85,94,99].

[26.1.1] The Weyl fractional integral may be rewritten as a convolution

(Iα± f)(x) = (Kα
± ∗ f)(x), (2.37)

where the convolution product for functions on R is defined as4

(K ∗ f)(x) :=

∞∫
−∞

K(x− y)f(y)dy (2.38)

and the convolution kernels are defined as

Kα
±(x) := Θ(±x)

(±x)α−1

Γ(α)
(2.39)

for α > 0. [26.1.3] Here

Θ(x) =


1 , x > 0

0 , x ≤ 0

(2.40)

is the Heaviside unit step function, and xα = expα log x with the convention that log x
is real for x > 0. [26.1.4] For α = 0 the kernel

K0
+(x) = K0

−(x) = δ(x) (2.41)

is the Dirac δ-function defined in (C.2) in Appendix 1. [26.1.5] Note that Kα
± ∈ L1

loc(R)
for α > 0.

2.2.1.4. Riesz Fractional Integrals

[26.2.1] Riemann-Liouville and Weyl fractional integrals have upper or lower limits of
integration, and are sometimes called left-sided resp. right-sided integrals. [26.2.2] A
more symmetric definition was advanced in [97].

Definition 2.3 [26.3.1] Let f ∈ L1
loc(R) be locally integrable. [26.3.2] The Riesz fractional

integral or Riesz potential of order α > 0 is defined as the linear combination [99]

(Iα f)(x) =
(Iα+ f)(x) + (Iα− f)(x)

2 cos(απ/2)

=
1

2Γ(α) cos(απ/2)

∞∫
−∞

f(y)

|x− y|1−α
dy (2.42)

4If K, f ∈ L1(R) then (K ∗ f)(t) exists for almost all t ∈ R and f ∈ L1(R). [26.1.2] If K ∈ Lp(R),
f ∈ Lq(R) with 1 < p, q < ∞ and 1/p+ 1/q = 1 then K ∗ f ∈ C0(R), the space of continuous functions
vanishing at infinity.
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[page 27, §0] of right- and left-sided Weyl fractional integrals. [27.0.1] The conjugate Riesz
potential is defined by

(Ĩαf)(x) =
(Iα+ f)(x)− (Iα− f)(x)

2 sin(απ/2)

=
1

2Γ(α) sin(απ/2)

∞∫
−∞

sgn(x− y)f(y)

|x− y|1−α
dy. (2.43)

[27.0.2] Of course, α 6= 2k + 1, k ∈ Z in (2.42) and α 6= 2k, k ∈ Z in (2.43). [27.0.3] The
definition is again completed with

(I0 f)(x) = (Ĩ0f)(x) = f(x) (2.44)

for α = 0.

[27.1.1] Riesz fractional integration may be written as a convolution

(Iα f)(x) = (Kα ∗ f)(x) (2.45a)

(Ĩαf)(x) = (K̃α ∗ f)(x) (2.45b)

with the (one-dimensional) Riesz kernels

Kα(x) =
Kα

+(x) +Kα
−(x)

2 cos(απ/2)
=

|x|α−1

2 cos(απ/2)Γ(α)
(2.46)

for α 6= 2k + 1, k ∈ Z, and

K̃α(x) =
Kα

+(x)−Kα
−(x)

2 sin(απ/2)
=
|x|α−1 sgn(x)

2 sin(απ/2)Γ(α)
(2.47)

for α 6= 2k, k ∈ Z. [27.1.2] Subsequently, Feller introduced the generalized Riesz-Feller
kernels [26]

Kα,β(x) =
|x|α−1 sin [α (π/2 + βsgnx)]

2 sin(απ/2)Γ(α)
(2.48)

with parameter β ∈ R. [27.1.3] The corresponding generalized Riesz-Feller fractional
integral of order α and type β is defined as

(Iα,β f)(x) = (Kα,β ∗ f)(x). (2.49)

[27.1.4] This formula interpolates continuously from the Weyl integral Iα− = Iα,−π/2 for
β = −π/2 through the Riesz integral Iα = Iα,0 for β = 0 to the Weyl integral Iα+ = Iα,π/2

for β = π/2. [27.1.5] Due to their symmetry Riesz-Feller fractional integrals are readily
generalized to higher dimensions.
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[page 28, §1]

2.2.1.5. Fractional Integrals of Distributions

[28.1.1] Fractional integration can be extended to distributions using the convolution for-
mula (2.37) above. [28.1.2] Distributions are generalized functions [31,105]. [28.1.3] They
are defined as linear functionals on a space X of conveniently chosen “test functions”.
[28.1.4] For every locally integrable function f ∈ L1

loc(R) there exists a distribution
Ff : X → C defined by

Ff (ϕ) = 〈f, ϕ〉 =

∞∫
−∞

f(x)ϕ(x) dx, (2.50)

where ϕ ∈ X is test function from a suitable space X of test functions. [28.1.5] By abuse
of notation one often writes f for the associated distribution Ff . [28.1.6] Distributions
that correspond to functions via (2.50) are called regular distributions. [28.1.7] Examples
for regular distributions are the convolution kernels Kα

± ∈ L1
loc(R) defined in (2.39).

[28.1.8] They are locally integrable functions on R when α > 0. [28.1.9] Distributions
that are not regular are sometimes called singular. [28.1.10] An important example for a
singular distribution is the Dirac δ-function. [28.1.11] It is defined as δ : X → C∫

δ(x)ϕ(x)dx = ϕ(0) (2.51)

for every test function ϕ ∈ X. [28.1.12] The test function space X is usually chosen as
a subspace of C∞(R), the space of infinitely differentiable functions. [28.1.13] A brief
introduction to distributions is given in Appendix 1.

[28.2.1] In order to generalize (2.37) to distributions one must define the convolution of
two distributions. [28.2.2] To do so one multiplies eq. (2.38) on both sides with a smooth
test function ϕ ∈ C∞c (R) of compact support. [28.2.3] Integrating gives

〈K ∗ f, ϕ〉 =

∞∫
−∞

∞∫
−∞

K(x− y)f(y)ϕ(x)dydx

=

∞∫
−∞

∞∫
−∞

K(x)f(y)ϕ(x+ y)dydx

= 〈K(x), 〈f(y), ϕ(x+ y)〉〉, (2.52)

where the notation 〈f(y), ϕ(x+y)〉 means that the functional Ff is applied to the function
ϕ(x+ ·) for fixed x. [28.2.4] Explicitly, for fixed x

Ff (ϕx) = 〈f(y), ϕx(y)〉 = 〈f(y), ϕ(x+ y)〉 =

∞∫
−∞

f(y)ϕ(x+ y)dx, (2.53)
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[page 29, §0] where ϕx(·) = ϕ(x + ·). [29.0.1] Equation (2.52) can be used as a defini-
tion for the convolution of distributions provided that the right hand side has meaning.
[29.0.2] This is not always the case as the counterexample K = f = 1 shows. [29.0.3] In
general the convolution product is not associative (see eq. (2.113)). [29.0.4] However,
associative and commutative convolution algebras exist [21]. [29.0.5] Equation (2.52) is
always meaningful when suppK or supp f is compact [63]. [29.0.6] Another case is when
K and f have support in R+. [29.0.7] This will be assumed in the following.

Definition 2.4 [29.1.1] Let f be a distribution f ∈ C∞0 (R)′ with supp f ⊂ R+. [29.1.2] Then
its fractional integral is the distribution Iα0+ f defined as

〈Iα0+ f, ϕ〉 = 〈Iα+ f, ϕ〉 = 〈Kα
+ ∗ f, ϕ〉 (2.54)

for Reα > 0. [29.1.3] It has support in R+.

[29.2.1] If f ∈ C∞0 (R)′ with supp f ⊂ R+ then also Iα0+ f ∈ C∞0 (R)′ with supp Iα0+ f ⊂ R+.

2.2.1.6. Integral Transforms

[29.3.1] The Fourier transformation is defined as

F {f} (k) =

∞∫
−∞

e−ikxf(x) dx (2.55)

for functions f ∈ L1(R). [29.3.2] Then

F
{

Iα± f
}

(k) = (±ik)−αF {f} (k) (2.56)

holds for 0 < α < 1 by virtue of the convolution theorem. [29.3.3] The equation cannot
be extended directly to α ≥ 1 because the Fourier integral on the left hand side may not
exist. [29.3.4] Consider e.g. α = 1 and f ∈ C∞c (R). [29.3.5] Then (I1

+ f)(x) →const as
x→∞ and F

{
I1
+ f
}
does not exist [94]. [29.3.6] Equation (2.56) can be extended to all

α with Reα > 0 for functions in the so called Lizorkin space [99, p.148] defined as the
space of functions f ∈ S(R) such that (Dm F {f})(0) = 0 for all m ∈ N0.

[29.4.1] For the Riesz potentials one has

F {Iα f} (k) = |k|−αF {f} (k) (2.57a)

F
{

Ĩαf
}

(k) = (−isgn k)|k|−αF {f} (k) (2.57b)

for functions in Lizorkin space.
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[page 30, §1] [30.1.1] The Laplace transform is defined as

L{f} (u) =

∞∫
0

e−uxf(x) dx (2.58)

for locally integrable functions f : R+ → C. [30.1.2] Now

L
{

Iα0+ f
}

(u) = u−αL{f} (u) (2.59)

by the convolution theorem for Laplace transforms. [30.1.3] The Laplace transform of
Iα0− f leads to a more complicated operator.

2.2.1.7. Fractional Integration by Parts

[30.2.1] If f(x) ∈ Lp([a, b]), g ∈ Lq([a, b]) with 1/p+1/q ≤ 1+α, p, q ≥ 1 and p 6= 1, q 6= 1
for 1/p+ 1/q = 1 + α then the formula

b∫
a

f(x)(Iαa+ g)(x)dx =

b∫
a

g(x)(Iαb− f)(x)dx (2.60)

holds. [30.2.2] The formula is known as fractional integration by parts [99]. [30.2.3] For
f(x) ∈ Lp(R), g ∈ Lq(R) with p > 1, q > 1 and 1/p+ 1/q = 1 + α the analogous formula

∞∫
−∞

f(x)(Iα+ g)(x)dx =

∞∫
−∞

g(x)(Iα− f)(x)dx (2.61)

holds for Weyl fractional integrals.

[30.3.1] These formulae provide a second method of generalizing fractional integration to
distributions. [30.3.2] Equation (2.60) may be read as

〈Iαa+ f, ϕ〉 = 〈f, Iαb− ϕ〉 (2.62)

for a distribution f and a test function ϕ. [30.3.3] It shows that right- and left-sided frac-
tional integrals are adjoint operators. [30.3.4] The formula may be viewed as a definition
of the fractional integral Iαa+ f of a distribution provided that the operator Iαb− maps the
test function space into itself.

2.2.1.8. Hardy-Littlewood Theorem

[30.4.1] The mapping properties of convolutions can be studied with the help of Youngs
inequality. Let p, q, r obey 1 ≤ p, q, r ≤ ∞ and 1/p+ 1/q = 1 + 1/r. [30.4.2] If K ∈ Lp(R)
and f ∈ Lq(R) then K ∗ f ∈ Lr(R) and Youngs inequality ‖K ∗ f‖r ≤ ‖K‖p ‖f‖q holds.
[30.4.3] It follows that ‖K ∗ f‖q ≤ C‖f‖p if



2.2. MATHEMATICAL INTRODUCTION TO FRACTIONAL DERIVATIVES 31

[page 31, §0] 1 ≤ p ≤ q ≤ ∞ and K ∈ Lr(R) with 1/r = 1 + (1/q) − (1/p). [31.0.1] The
Hardy-Littlewood theorem states that these estimates remain valid for Kα

± although these
kernels do not belong to any Lp(R)-space [37,38]. [31.0.2] The theorem was generalized to
higher dimensions by Sobolev in 1938, and is also known as the Hardy-Littlewood-Sobolev
inequality (see [37,38,63,113]).

Theorem 2.5 [31.1.1] Let 0 < α < 1, 1 < p < 1/α, −∞ ≤ a < b ≤ ∞. [31.1.2] Then
Iαa+, I

α
b− are bounded linear operators from Lp([a, b]) to Lq([a, b]) with 1/q = (1/p)−α,i.e.

there exists a constant C(p, q) independent of f such that ‖ Iαa+ f‖q ≤ C‖f‖p.

2.2.1.9. Additivity

[31.2.1] The basic composition law for fractional integrals follows from

(Kα
+ ∗K

β
+)(x) =

x∫
0

Kα
+(x− y)Kβ

+(y) dy =

x∫
0

(x− y)α−1

Γ(α)

yβ−1

Γ(β)
dy

=
xα−1

Γ(α)

xβ−1

Γ(β)

1∫
0

(1− z)α−1zβ−1xdz

=
xα+β−1

Γ(α+ β)
= Kα+β

+ (x), (2.63)

where Euler’s Beta-function

Γ(α)Γ(β)

Γ(α+ β)
=

1∫
0

(1− z)α−1zβ−1dz = B(α, β) (2.64)

was used. [31.2.2] This implies the semigroup law for exponents

Iαa+ Iβa+ = Iα+β
a+ , (2.65)

also called additivity law. [31.2.3] It holds for Riemann-Liouville, Weyl and Riesz-Feller
fractional integrals of functions.

2.2.2. Fractional Derivatives

2.2.2.1. Riemann-Liouville Fractional Derivatives

[31.3.1] Riemann [96, p.341] suggested to define fractional derivatives as integer order
derivatives of fractional integrals.

Definition 2.6 [31.4.1] Let−∞ ≤ a < x < b ≤ ∞. [31.4.2] The Riemann-Liouville fractional
derivative of order 0 < α < 1 with lower limit a (resp. upper limit b) is defined for
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[page 32, §0] functions such that f ∈ L1([a, b]) and f ∗K1−α ∈W 1,1([a, b]) as

(Dα
a± f)(x) = ± d

dx
(I1−α
a± f)(x) (2.66)

and (D0
a± f)(x) = f(x) for α = 0. [32.0.1] For α > 1 the definition is extended for

functions f ∈ L1([a, b]) with f ∗Kn−α ∈Wn,1([a, b]) as

(Dα
a± f)(x) = (±1)n

dn

dxn
(In−αa± f)(x), (2.67)

where5 n = [Reα] + 1 is smallest integer larger than α.

[32.1.1] Here W k,p(G) = {f ∈ Lp(G) : Dk f ∈ Lp(G)} denotes a Sobolev space defined
in (B.17). [32.1.2] For k = p = 1 the space W 1,1([a, b]) = AC0([a, b]) coincides with the
space of absolutely continuous functions.

[32.2.1] The notation for fractional derivatives is not standardized6. [32.2.2] Leibniz and
Euler used dα [25,72,73] Riemann wrote ∂αx [96], Liouville preferred dα/dxα [76], Grün-
wald used {dαf/dxα}x=x

x=a or Dα[f ]x=x
x=a [34], Marchaud wrote D(α)

a , and Hardy-Littlewood
used an index fα [37]. [32.2.3] The notation in (2.67) follows [52,54,98,99]. Modern au-
thors also use I−α [97], I−αx [23], aD

α
x [85,94,102], dα/dxα [102,129], dα/d(x−a)α [92]

instead of Dα
a+.

[32.3.1] Let f(x) be absolutely continuous on the finite interval [a, b]. [32.3.2] Then, its
derivative f ′ exists almost everywhere on [a, b] with f ′ ∈ L1([a, b]), and the function f
can be written as

f(x) =

x∫
a

f ′(y)dy + f(a) = (I1
a+ f

′)(x) + f(a). (2.68)

Substituting this into Iαa+ f gives

(Iαa+ f)(x) = (I1
a+ Iαa+ f

′)(x) +
f(a)

Γ(α+ 1)
(x− a)α, (2.69)

where commutativity of I1
a+ and Iαa+ was used. [32.3.3] It follows that

(D Iαa+ f)(x)− (Iαa+ D f)(x) =
f(a)

Γ(α)
(x− a)α−1 (2.70)

for 0 < α < 1. [32.3.4] Above, the notations

(D f)(x) =
df(x)

dx
= f ′(x) (2.71)

were used for the first order derivative.

5[x] is the largest integer smaller than x.
6see footnote 2
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[page 33, §1] [33.1.1] This observation suggests to introduce a modified Riemann-Liouville
fractional derivative through

(D̃
α

a+ f)(x) := In−αa+ f (n)(x) =
1

Γ(n− α)

x∫
a

f (n)(y)

(x− y)α−n+1
dy, (2.72)

where n = [Reα] + 1. [33.1.2] Note, that f must be at least n-times differentiable.
[33.1.3] Formula (2.72) is due to Liouville [76, p.10] (see eq. (2.18) above), but nowadays
sometimes named after Caputo [17].

[33.2.1] The relation between (2.72) and (2.67) is given by
Theorem 2.7 [33.2.2] For f ∈ ACn−1([a, b]) with n = [Reα] + 1 the Riemann-Liouville
fractional derivative (Dα

a+ f)(x) exists almost everywhere for Reα ≥ 0. [33.2.3] It can be
written as

(Dα
a+ f)(x) = (D̃

α

a+ f)(x) +
n−1∑
k=0

(x− a)k−α

Γ(k − α+ 1)
f (k)(a) (2.73)

in terms of the Liouville(-Caputo) derivative defined in (2.72).

[33.3.1] The Riemann-Liouville fractional derivative is the left inverse of Riemann-Liouville
fractional integrals. [33.3.2] More specifically, [99, p.44]
Theorem 2.8 [33.3.3] Let f ∈ L1([a, b]). [33.3.4] Then

Dα
a+ Iαa+ f(x) = f(x) (2.74)

holds for all α with Reα ≥ 0.

[33.4.1] For the right inverses of fractional integrals one finds
Theorem 2.9 [33.4.2] Let f ∈ L1([a, b]) and Reα > 0. [33.4.3] If in addition In−αa+ f ∈
ACn([a, b]) where n = [Reα] + 1 then

Iαa+ Dα
a+ f(x) = f(x)−

n−1∑
k=0

(x− a)α−k−1

Γ(α− k)

(
Dn−k−1 In−αa+ f

)
(a) (2.75)

holds. [33.4.4] For 0 < Reα < 1 this becomes

Iαa+ Dα
a+ f(x) = f(x)−

(I1−α
a+ f)(a)

Γ(α)
(x− a)α−1. (2.76)

[33.5.1] The last theorem implies that for f ∈ L1([a, b]) and Reα > 0 with n = [Reα] + 1
the equality

Iαa+ Dα
a+ f(x) = f(x) (2.77)
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[page 34, §0] holds only if

In−αa+ f ∈ ACn([a, b]) (2.78a)

and (
Dk In−αa+ f

)
(a) = 0 (2.78b)

for all k = 0, 1, 2, ..., n − 1. [34.0.1] Note that the existence of g(x) = Dα
a+ f(x) in eq.

(2.77) does not imply that f(x) can be written as (Iαa+ g)(x) for some integrable function
g [99]. [34.0.2] This holds only if both conditions (2.78) are satisfied. [34.0.3] As an
example where one of them fails, consider the function f(x) = (x− a)α−1 for 0 < α < 1.
[34.0.4] Then Dα

a+(x − a)α−1 = 0 exists. [34.0.5] Now D0 I1−α
a+ (x − a)α−1 6= 0 so that

(2.78b) fails. [34.0.6] There does not exist an integrable g such that Iαa+ g = (x − a)α−1.
[34.0.7] In fact, g corresponds to the δ-distribution δ(x− a).

2.2.2.2. General Types of Fractional Derivatives

[34.1.1] Riemann-Liouville fractional derivatives have been generalized in [52, p.433] to
fractional derivatives of different types.

Definition 2.10 [34.2.1] The generalized Riemann-Liouville fractional derivative of order
0 < α < 1 and type 0 ≤ β ≤ 1 with lower (resp. upper) limit a is defined as

(Dα,β
a± f)(x) =

(
± I

β(1−α)
a±

d

dx

(
I
(1−β)(1−α)
a± f

))
(x) (2.79)

for functions such that the expression on the right hand side exists.

[34.3.1] The type β of a fractional derivative allows to interpolate continuously from
Dα
a± = Dα,0

a± to D̃
α

a± = Dα,1
a± . [34.3.2] A relation between fractional derivatives of the same

order but different types was given in [52, p.434].

2.2.2.3. Marchaud-Hadamard Fractional Derivatives

[34.4.1] Marchaud’s approach [78] is based on Hadamards finite parts of divergent integrals
[36]. [34.4.2] The strategy is to define fractional derivatives as analytic continuation of
fractional integrals to negative orders. [see [99, p.225]]

Definition 2.11 [34.5.1] Let −∞ < a < b < ∞ and 0 < α < 1. [34.5.2] The Marchaud
fractional derivative of order α with lower limit a is defined as

(Mα
a+ f)(x) =

f(x)

Γ(1− α)(x− a)α
+

α

Γ(1− α)

x∫
a

f(x)− f(y)

(x− y)α+1
dy (2.80)
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[page 35, §0] and the Marchaud fractional derivative of order α with upper limit b is defined
as

(Mα
b− f)(x) =

f(x)

Γ(1− α)(b− x)α
+

α

Γ(1− α)

b∫
x

f(x)− f(y)

(x− y)α+1
dy. (2.81)

[35.0.1] For a = −∞ (resp. b =∞) the definition is

(Mα
± f)(x) =

α

Γ(1− α)

∞∫
0

f(x)− f(x∓ y)

yα+1
dy. (2.82)

[35.0.2] The definition is completed with M0 f = f for all variants.

[35.1.1] The idea of Marchaud’s method is to extend the Riemann-Liouville integral from
α > 0 to α < 0, and to define

(I−α+ f)(x) =
1

Γ(−α)

∞∫
0

y−α−1f(x− y) dy, (2.83)

where α > 0. [35.1.2] However, this is not possible because the integral in (2.83) diverges.
[35.1.3] The idea is to subtract the divergent part of the integral,∫ ∞

ε

y−α−1f(x)dy =
f(x)

αεα
(2.84)

obtained by setting f(x− y) ≈ f(x) for y ≈ 0. [35.1.4] Subtracting (2.83) from (2.84) for
0 < α < 1 suggests the definition

(Mα
+ f)(x) = lim

ε→0+

1

Γ(−α)

∞∫
ε

f(x)− f(x− y)

yα+1
dy (2.85)

[35.1.5] Formal integration by parts leads to (I1−α
+ f ′)(x), showing that this definition

contains the Riemann-Liouville definition.

[35.2.1] The definition may be extended to α > 1 in two ways. [35.2.2] The first consists
in applying (2.85) to the n-th derivative dnf/dxn for n < α < n+ 1. [35.2.3] The second
possibility is to regard f(x−y)−f(x) as a first order difference, and to generalize to n-th
order differences. [35.2.4] The n-th order difference is

(∆n
yf)(x) = (1−Ty)nf(x) =

n∑
k=0

(−1)k
(
n

k

)
f(x− ky), (2.86)

where (1 f)(x) = f(x) is the identity operator and

(Thf)(x) = f(x− h) (2.87)
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[page 36, §0] is the translation operator. [36.0.1] The Marchaud fractional derivative can
then be extended to 0 < α < n through [94,98]

(Mα
+ f)(x) = lim

ε→0+

1

Cα,n

∞∫
ε

∆n
yf(x)

yα+1
dy, (2.88)

where

Cα,n =

∞∫
0

(1− e−y)n

yα+1
dy, (2.89)

where the limit may be taken in the sense of pointwise or norm convergence.

[36.1.1] The Marchaud derivatives Mα
± are defined for a wider class of functions than Weyl

derivatives Dα
±. [36.1.2] As an example consider the function f(x) =const.

[36.2.1] Let f be such that there exists a function g ∈ L1([a, b]) with f = Iαa+ g. [36.2.2]
Then the Riemann-Liouville derivative and the Marchaud derivative coincide almost ev-
erywhere, i.e. (Mα

a+ f)(x) = (Dα
a+ f)(x) for almost all x [99, p.228].

2.2.2.4. Weyl Fractional Derivatives

[36.3.1] There are two kinds of Weyl fractional derivatives for periodic functions. [36.3.2]
The Weyl-Liouville fractional derivative is defined as [99, p.351], [94]

(Dα
± f)(x) = ± d

dx
(I1−α
± f)(x) (2.90)

for 0 < α < 1 where the Weyl integral ± Iα± f was defined in (2.34). [36.3.3] The Weyl-
Marchaud fractional derivative is defined as [99, p.352], [94]

(Wα
± f)(x) =

1

2π

2π∫
0

[f(x− y)− f(x)] (D1 Ψ1−α
± )(y)dy (2.91)

for 0 < α < 1 where Ψ±(x) is defined in eq. (2.35). [36.3.4] The Weyl derivatives are
defined for periodic functions of with zero mean in Cβ(R/2πZ) where β > α. [36.3.5] In
this space (Dα

± f)(x) = (Wα
± f)(x), i.e. the Weyl-Liouville and Weyl-Marchaud form

coincide [99]. [36.3.6] As for fractional integrals, it can be shown that the Weyl-Liouville
derivative (0 < α < 1)

(Dα
+ f)(x) =

1

Γ(1− α)

x∫
−∞

f(y)

(x− y)α
dy (2.92)

coincides with the Riemann-Liouville derivative with lower limit −∞. [36.3.7] In addition
one has the equivalence Dα

+ f = Wα
+ f with the Marchaud-Hadamard fractional derivative

in a suitable sense [99, p.357].
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2.2.2.5. Riesz Fractional Derivatives

[37.1.1] To define the Riesz fractional derivative as integer derivatives of Riesz potentials
consider the Fourier transforms

F
{

D I1−α f
}

(k) = (ik)|k|α−1F {f} (k) = (isgn k)|k|αF {f} (k) (2.93)

F
{

D Ĩ1−αf
}

(k) = (ik)(−isgn k)|k|α−1F {f} (k) = |k|αF {f} (k) (2.94)

for 0 < α < 1. [37.1.2] Comparing this to eq. (2.57) suggests to consider
d

dx
(Ĩ1−αf)(x) = lim

h→0

1

h

[
(Ĩ1−αf)(x+ h)− (Ĩ1−αf)(x)

]
(2.95)

as a candidate for the Riesz fractional derivative.

[37.2.1] Following [94] the strong Riesz fractional derivative of order α Rα f of a function
f ∈ Lp(R), 1 ≤ p <∞, is defined through the limit

lim
h→0

∥∥∥∥ 1

h
(f ∗K1−α

h )− Rα f

∥∥∥∥
p

= 0, (2.96)

whenever it exists. [37.2.2] The convolution kernel defined as

K1−α
h =

1

2Γ(1− α) sin(απ/2)

[
sgn (x+ h)

|x+ h|α
− sgnx

|x|α

]
(2.97)

is obtained from eq. (2.95). [37.2.3] Indeed, this definition is equivalent to eq. (2.94).
[37.2.4] A function f ∈ Lp(R) where 1 ≤ p ≤ 2 has a strong Riesz derivative of order
α if and only if there exsists a function g ∈ Lp(R) such that |k|αF {f} (k) = F {g} (k).
[37.2.5] Then Rα f = g.

2.2.2.6. Grünwald-Letnikov Fractional Derivatives

[37.3.1] The basic idea of the Grünwald approach is to generalize finite difference quotients
to noninteger order, and then take the limit to obtain a differential quotient. [37.3.2] The
first order derivative is the limit

d

dx
f(x) = (D f)(x) = lim

h→0

f(x)− f(x− h)

h
= lim
h→0

[1−T(h)]

h
f(x) (2.98)

of a difference quotient. [37.3.3] In the last equality (1 f)(x) = f(x) is the identity
operator, and

[T(h)f ](x) = f(x− h) (2.99)

is the translation operator. [37.3.4] Repeated application of T gives

[T(h)nf ](x) = f(x− nh), (2.100)
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d2

dx2
f(x) = (D2 f)(x) = lim

h→0

f(x)− 2f(x− h) + f(x− 2h)

h2

= lim
h→0

{
[1−T(h)]

h

}2

f(x), (2.101)

and the n-th derivative
dn

dxn
f(x) = (Dn f)(x) = lim

h→0

1

hn

n∑
k=0

(−1)k
(
n

k

)
f(x− kh)

= lim
h→0

{
[1−T(h)]

h

}n
f(x), (2.102)

which exhibits the similarity with the binomial formula. [38.0.2] The generalization to
noninteger n gives rise to fractional difference quotients defined through

(∆α
hf)(x) =

∞∑
k=0

(−1)k
(
α

k

)
f(x− kh) (2.103)

for α > 0. [38.0.3] These are generally divergent for α < 0. [38.0.4] For example, if
f(x) = 1, then

N∑
k=0

(−1)k
(
α

k

)
=

1

Γ(1− α)

Γ(N + 1− α)

Γ(N + 1)
(2.104)

diverges as N →∞ if α < 0. [38.0.5] Fractional difference quotients were studied in [68].
Note that fractional differences obey [99]

(∆α
h(∆β

hf))(x) = (∆α+β
h f)(x). (2.105)

Definition 2.12 [38.1.1] The Grünwald-Letnikov fractional derivative of order α > 0 is
defined as the limit

(Gα
± f)(x) = lim

h→0+

1

hα
(∆α
±hf)(x) (2.106)

of fractional difference quotients whenever the limit exists. [38.1.2] The Grünwald Let-
nikov fractional derivative is called pointwise or strong depending on whether the limit is
taken pointwise or in the norm of a suitable Banach space.

[38.2.1] For a definition of Banach spaces and their norms see e.g. [128].

[38.3.1] The Grünwald-Letnikov fractional derivative has been studied for periodic func-
tions in Lp(R/2πZ) with 1 ≤ p <∞ in [94,99]. [38.3.2] It has the following properties.
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Theorem 2.13 [39.1.1] Let f ∈ Lp(R/2πZ), 1 ≤ p < ∞ and α > 0. [39.1.2] Then the
following statements are equivalent:

(1) Gα
+ f ∈ Lp(R/2πZ)

(2) [39.1.3] There exists a function g ∈ Lp(R/2πZ) such that
(ik)αF {f(x)} (k) = F {g(x)} (k) where k ∈ Z.

(3) [39.1.4] There exists a function g ∈ Lp(R/2πZ) such that
f(x)−F {f(x)} (0) = (Iα+ g)(x) holds for almost all x.

Theorem 2.14 [39.2.1] Let f ∈ Lp(R/2πZ), 1 ≤ p <∞ and α, β > 0. [39.2.2] Then:

(1) Gα
+ f ∈ Lp(R/2πZ) implies Gβ

+ f ∈ Lp(R/2πZ) for every 0 < β < α.

(2) Gα
+ Gβ

+ f = Gα+β
+ f

(3) Gα
+(Iα+ f) = f(x)−F {f} (0)

2.2.2.7. Fractional Derivatives of Distributions

[39.3.1] The basic idea for defining fractional differentiation of distributions is to extend
the definition of fractional integration (2.54) to negative α. [39.3.2] However, for Reα < 0
the distribution Kα

+ becomes singular because xα−1 is not locally integrable in this case.
[39.3.3] The extension of Kα

+ to Reα < 0 requires regularization [31,63,128]. [39.3.4] It
turns out that the regularization exists and is essentially unique as long as (−α) /∈ N0.

Definition 2.15 [39.4.1] Let f be a distribution f ∈ C∞0 (R)′ with supp f ⊂ R+. [39.4.2] Then
the fractional derivative of order α with lower limit 0 is the distribution Dα

0+ f defined as

〈Dα
0+ f, ϕ〉 = 〈Dα

+ f, ϕ〉 = 〈K−α+ ∗ f, ϕ〉, (2.107)

where α ∈ C and

Kα
+(x) =


Θ(x)

xα−1

Γ(α)
,Reα > 0

dN

dxN

[
Θ(x)

xα+N−1

Γ(α+N)

]
,Reα+N > 0, N ∈ N

(2.108)

is the kernel distribution. [39.4.3] For α = 0 one finds K0
+(x) = (d/dx)Θ(x) = δ(x) and

D0
0+ = 1 as the identity operator. [39.4.4] For the α = −k, k ∈ N one finds

K−k+ (x) = δ(k)(x), (2.109)

where δ(k) is the k-th derivative of the δ distribution.



40 2. THREEFOLD INTRODUCTION TO FRACTIONAL DERIVATIVES

[page 40, §1] [40.1.1] The kernel distribution in (2.108) is

K−α+ (x) =
d

dx

[
Θ(x)

x−α

Γ(1− α)

]
=

d

dx
K1−α

+ (x) (2.110)

for 0 < α < 1. [40.1.2] Its regularized action is〈
K−α+ (x), ϕ(x)

〉
=

〈
d

dx
K1−α

+ (x), ϕ(x)

〉
= −

〈
K1−α

+ (x), ϕ(x)′
〉

(2.111a)

= − 1

Γ(1− α)
lim
ε→0

∞∫
ε

x−αϕ(x)′dx (2.111b)

= − lim
ε→0

 ϕ(x) + C

Γ(α)xα

∣∣∣∣∞
ε

−
∞∫
ε

ϕ(x) + C

Γ(−α)x1+α
dx

 (2.111c)

=

∞∫
0

ϕ(x)− ϕ(0)

Γ(−α)x1+α
dx, (2.111d)

where ϕ(∞) <∞ was assumed in the last step and the arbitrary constant was chosen as
C = −ϕ(0). [40.1.3] This choice regularizes the divergent first term in (2.111c). [40.1.4] If
this rule is used for the distributional convolution

(K−α+ ∗ f)(x) =
1

Γ(−α)

∞∫
0

f(x)− f(x− y)

yα+1
dy = (Mα

+ f)(x) (2.112)

then the Marchaud-Hadamard form is recovered with 0 < α < 1.

[40.2.1] It is now possible to show that the convolution of distributions is in general not
associative. [40.2.2] A counterexample is

(1 ∗ δ′) ∗Θ = 1′ ∗Θ = 0 ∗Θ = 0 6= 1 = 1 ∗ δ = 1 ∗Θ′ = 1 ∗ (δ′ ∗Θ), (2.113)

where Θ is the Heaviside step function.

[40.3.1] Dα
0+ f has support in R+. [40.3.2] The distributions in f ∈ C∞0 (R)′ with supp f ⊂

R+ form a convolution algebra [21] and one finds [31,99]
Theorem 2.16 [40.3.3] If f ∈ C∞0 (R)′ with supp f ⊂ R+ then also Iα0+ f ∈ C∞0 (R)′ with
Iα0+ supp f ⊂ R+. [40.3.4] Moreover, for all α, β ∈ C

Dα
0+ Dβ

0+ f = Dα+β
0+ f (2.114)

with Dα
0+ f = I−α0+ f for Reα < 0. [40.3.5] For each f ∈ C∞0 (R)′ with supp f ⊂ R+ there

exists a unique distribution g ∈ C∞0 (R)′ with supp g ⊂ R+ such that f = Iα0+ g.



2.2. MATHEMATICAL INTRODUCTION TO FRACTIONAL DERIVATIVES 41

[page 41, §1] [41.1.1] Note that

Dα
0+ f = Dα

0+(1 f) = (K−α+ ∗K0
+) ∗ f = (Dα

0+ δ) ∗ f = δ(α) ∗ f (2.115)

for all α ∈ C.

[41.2.1] Also, the differentiation rule

Dα
0+K

β
+ = Kβ−α

+ (2.116)

holds for all α, β ∈ C. [41.2.2] It contains

DKβ
+ = Kβ−1

+ (2.117)

for all β ∈ C as a special case.

2.2.2.8. Fractional Derivatives at Their Lower Limit

[41.3.1] All fractional derivatives defined above are nonlocal operators. [41.3.2] A local
fractional derivative operator was introduced in [40,41,52].

Definition 2.17 [41.4.1] For −∞ < a < ∞ the Riemann-Liouville fractional derivative of
order 0 < α < 1 at the lower limit a is defined by

dαf

dxα

∣∣∣∣
x=a

= f (α)(a) = lim
x→a±

(Dα
a± f)(x), (2.118)

whenever the two limits exist and are equal. [41.4.2] If f (α)(a) exists the function f is
called fractionally differentiable at the limit a.

[41.5.1] These operators are useful for the analysis of singularities. [41.5.2] They were ap-
plied in [40–42,44,52] to the analysis of singularities in the theory of critical phenomena
and to the generalization of Ehrenfests classification of phase transitions. [41.5.3] There
is a close relationship to the theory of regularly varying functions [107] as evidenced by
the following result [52].

Theorem 2.18 [41.6.1] Let the function f : [0,∞[→ R be monotonously increasing with
f(x) ≥ 0 and f(0) = 0, and such that (Dα,λ

0+ f)(x) with 0 < α < 1 and 0 ≤ λ ≤ 1
is also monotonously increasing on a neighbourhood [0, δ] for small δ > 0. [41.6.2] Let
0 ≤ β < λ(1 − α) + α, let C ≥ 0 be a constant and Λ(x) a slowly varying function for
x→ 0. [41.6.3] Then

lim
x→0

f(x)

xβΛ(x)
= C (2.119)

holds if and only if

lim
x→0

(Dα,λ
0+ f)(x)

xβ−αΛ(x)
= C

Γ(β + 1)

Γ(β − α+ 1)
(2.120)

holds.
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[42.1.1] A function f is called slowly varying at infinity if limx→∞ f(bx)/f(x) = 1 for all
b > 0. [42.1.2] A function f(x) is called slowly varying at a ∈ R if f(1/(x− a)) is slowly
varying at infinity.

2.2.2.9. Fractional Powers of Operators

[42.2.1] The spectral decomposition of selfadjoint operators is a familiar mathematical
tool from quantum mechanics [116]. [42.2.2] Let A denote a selfadjoint operator with
domain D(A) and spectral family Eλ on a Hilbert space X with scalar product (·, ·).
[42.2.3] Then

(Au, v) =

∫
σ(A)

λd(Eλu, v) (2.121)

holds for all u, v ∈ D(A). [42.2.4] Here σ(A) is the spectrum of A. [42.2.5] It is then
straightforward to define the fractional power Aαu by

(Aαu, u) =

∫
σ(A)

λαd(Eλu, u) (2.122)

on the domain

D(Aα) = {u ∈ X :

∫
σ(A)

λαd(Eλu, u) <∞}. (2.123)

[42.2.6] Similarly, for any measurable function g : σ(A)→ C the operator g(A) is defined
with an integrand g(λ) in eq. (2.122). [42.2.7] This yields an operator calculus that allows
to perform calculations with functions instead of operators.

[42.3.1] Fractional powers of the Laplacian as the generator of the diffusion semigroup
were introduced by Bochner [13] and Feller [26] based on Riesz’ fractional potentials.
[42.3.2] The fractional diffusion equation

∂f

∂t
= −(−∆)α/2f (2.124)

was related by Feller to the Levy stable laws [74] using one dimensional fractional integrals
I−α,β of order −α and type β [26]7. [42.3.3] For α = 2 eq. (2.124) reduces to the diffusion
equation. [42.3.4] This type of fractional diffusion will be referred to as fractional diffusion
of Bochner-Levy type (see Section 2.3.4 for more discussion). [42.3.5] Later, these ideas
were extended to fractional powers of closed8 semigroup generators [4,5,69,70]. [42.3.6] If
(−A) is the infinitesimal generator of a

7Fellers motivation to introduce the type β was this relation.
8 An operator A : B → B on a Banach space B is called closed if the set of pairs (x,Ax) with

x ∈ D(A) is closed in B ×B.
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space B then its fractional power is defined as

(−A)αf = lim
ε→0+

1

−Γ(−α)

∞∫
ε

t−α−1[1−T (t)]fdt (2.125)

for every f ∈ B for which the limit exists in the norm of B [93,120,121,123]. [43.0.1] This
aproach is clearly inspired by the Marchaud form (2.82). Alternatively, one may use the
Grünwald approach to define fractional powers of semigroup generators [99,122].

2.2.2.10. Pseudodifferential Operators

[43.1.1] The calculus of pseudodifferential operators represents another generalization of
the operator calculus in Hilbert spaces. [43.1.2] It has its roots in Hadamard’s ideas [36],
Riesz potentials [97], Feller’s suggestion [26] and Calderon-Zygmund singular integrals
[16]. [43.1.3] Later it was generalized and became a tool for treating elliptic partial
differential operators with nonconstant coefficients.

Definition 2.19 [43.2.1] A (Kohn-Nirenberg) pseudodifferential operator of order α ∈ R
σ(x,D) : S(Rd)→ S(Rd) is defined as

σ(x,D)f(x) =
1

(2π)d

∫
Rd

eixkσ(x, k)F {f} (k)dk (2.126)

and the function σ(x, k) is called its symbol. [43.2.2] The symbol is in the Kohn-Nirenberg
symbol class Sα if it is in C∞(R2d), and there exists a compact set K ⊂ Rd such that
suppσ ⊂ K ×Rd, and for any pair of multiindices β, γ there is a constant Cβ,γ such that

Dβ
k Dγ

x σ(x, k) ≤ Cβ,γ(1 + |k|)α−|β|. (2.127)

[43.2.3] The Hörmander symbol class Sαρ,δ is obtained by replacing the exponent α− |β|
on the right hand side with α− ρ|β|+ δ|γ| where 0 ≤ ρ, δ ≤ 1.

[43.3.1] Pseudodifferential operators provide a unified approach to differential and inte-
gral or convolution operators that are “nearly” translation invariant. [43.3.2] They have
a close relation with Weyl quantization in physics [28,116]. However, they will not be
discussed further because the traditional symbol classes do not contain the usual frac-
tional derivative operators. [43.3.3] Fractional Riesz derivatives are not pseudodifferential
operators in the sense above. [43.3.4] Their symbols do not fall into any of the standard
Kohn-Nirenberg or Hörmander symbol classes due to lack of differentiability at the origin.
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2.2.3. Eigenfunctions

[44.1.1] The eigenfunctions of Riemann-Liouville fractional derivatives are defined as the
solutions of the fractional differential equation

(Dα
0+ f)(x) = λf(x), (2.128)

where λ is the eigenvalue. [44.1.2] They are readily identifed using eq. (A.6) as

f(x) = x1−αEα,α(λxα), (2.129)

where

Eα,β =

∞∑
k=0

xk

Γ(αk + β)
(2.130)

is the generalized Mittag-Leffler function [125,126]. [44.1.3] More generally the eigen-
value equation for fractional derivatives of order α and type β reads

(Dα,β
0+ f)(x) = λf(x), (2.131)

and it is solved by [54, eq.124]

f(x) = x(1−β)(1−α)Eα,α+β(1−α)(λx
α), (2.132)

Figure 2.1. Truncated real part of the generalized Mittag-Leffler func-
tion −3 ≤ Re E0.8,0.9(z) ≤ 3 for z ∈ C with −7 ≤ Re z ≤ 5 and
−10 ≤ Im z ≤ 10. The solid line is defined by Re E0.8,0.9(z) = 0.
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special case is the equation

(Dα,1
0+ f)(x) = λf(x), (2.133)

with Dα,1
0+ = D̃

α

0+. [45.0.2] In this case the eigenfunction

f(x) = Eα(λxα), (2.134)

where Eα(x) = Eα,1(x) is the Mittag-Leffler function [86]. [45.0.3] The Mittag-Leffler
function plays a central role in fractional calculus. [45.0.4] It has only recently been
calculated numerically in the full complex plane [62, 108]. [45.0.5] Figure 2.1 and 2.2
illustrate E0.8,0.9(z) for a rectangular region in the complex plane (see [108]).

[45.1.1] The solid line in Figure 2.1 is the line Re E0.8,0.9(z) = 0, in Figure 2.2 it is
Im E0.8,0.9(z) = 0.

Figure 2.2. Same as Fig. 2.1 for the imaginary part of E0.8,0.9(z). The
solid line is Im E0.8,0.9(z) = 0.

[45.2.1] Note, that some authors are avoiding the operator Dα,1
0+ in fractional differential

equations (see e.g. [7,82,84,101,111,112] or chapters in this volume). [45.2.2] In their
notation the eigenvalue equation (2.133) becomes (c.f. [112, eq.(22)])

d

dx
f(x) = λD1−α

0+ f(x) (2.135)

containing two derivative operators instead of one.
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2.3. Physical Introduction to Fractional Derivatives

2.3.1. Basic Questions

[46.1.1] An introduction to fractional derivatives would be incomplete without an introduc-
tion to applications. [46.1.2] In the past fractional calculus has been used predominantly
as a convenient calculational tool [26, 76, 89]. [46.1.3] A well known example is Riesz’
interpolation method for solving the wave equation [20]. [46.1.4] In recent times, however,
fractional differential equations appear as “generalizations” of more or less fundamental
equations of physics [3, 12, 18, 23, 43, 46, 52, 54–56, 58, 60, 90, 91, 102, 104, 119, 129].
[46.1.5] The idea is that physical phenomena can be described by fractional differential
equations. [46.1.6] This practice raises at least two fundamental questions:

(1) [46.1.7] Are mathematical models with fractional derivatives consistent with the
fundamental laws and fundamental symmetries of nature ?

(2) [46.1.8] How can the fractional order α of differentiation be observed or how
does a fractional derivative emerge from concrete models ?

[46.1.9] Both questions will be addressed here. [46.1.10] The answer to the first question
is provided by the theory of fractional time evolutions [43,47], the answer to the second
question by anomalous subdiffusion [46,60].

2.3.2. Fractional Space

[46.2.1] Fractional derivatives are nonlocal operators. [46.2.2] Nevertheless, numerous
authors have proposed fractional differential equations involving fractional spatial deriva-
tives. [46.2.3] Particularly popular are fractional powers of the Laplace operator due to the
well known work of Riesz, Feller and Bochner [13,27,97]. The nonlocality of fractional
spatial derivatives raises serious (largely) unresolved physical problems.

[46.3.1] As an illustration of the problem with spatial fractional derivatives consider the
one dimensional potential equation for functions f ∈ C2(R)

d2

dx2
f(x) = 0, x ∈ G (2.136)

on the open interval G =]a, b[ with boundary conditions f(a) = 0, f(b) = 0 with a < b.
A solution of this boundary value problem is f(x) = 0 with x ∈ G. [46.3.2] This trivial
solution remains unchanged as long as the boundary values f(a) = f(b) = 0 remain
unperturbed. [46.3.3] All functions f ∈ C2(R) that vanish on [a, b] are solutions of the
boundary value problem. [46.3.4] In particular, the boundary



2.3. PHYSICAL INTRODUCTION TO FRACTIONAL DERIVATIVES 47

[page 47, §0] specification

f(x) = 0, for x ∈ R \G (2.137)

and the perturbed boundary specification

f(x) = g(x), for x ∈ R \G (2.138)

with g ≥ 0 and supp g ∩ [a, b] = ∅ have the same trivial solution f = 0 in G. [47.0.1] The
reason is that d2/dx2 is a local operator.

[47.1.1] Consider now a fractional generalization of (2.136) that arises for example as the
stationary limit of (Bochner-Levy) fractional diffusion equations with a fractional Laplace
operator [13]. [47.1.2] Such a onedimensional fractional Laplace equation reads

Rα f(x) = 0, (2.139)

where Rα is a Riesz fractional derivative of order 0 < α < 1. [47.1.3] For the boundary
specification (2.137) it has the same trivial solution f(x) = 0 for all x ∈ G. [47.1.4] But
this solution no longer applies for the perturbed boundary specification (2.138). [47.1.5] In
fact, assuming (2.138) for x ∈ R \G and f(x) = 0 for x ∈ G now yields (Rα f)(x) 6= 0 for
all x ∈ G. [47.1.6] The exterior R\G of the domain G cannot be isolated from the interior
of G using classical boundary conditions. [47.1.7] The reason is that Rα is a nonlocal
operator.

[47.2.1] Locality in space is a basic and firmly established principle of physics (see e.g.
[35,115]). [47.2.2] Of course, one could argue that relativistic effects are negligible, and
that fractional spatial derivatives might arise as an approximate phenomenological model
describing an underlying physical reality that obeys spatial locality. [47.2.3] However,
spatial fractional derivatives imply not only action at a distance. [47.2.4] As seen above,
they imply also that the exterior domain cannot be decoupled from the interior by con-
ventional walls or boundary conditions. [47.2.5] This has far reaching consequences for
theory and experiment. [47.2.6] In theory it invalidates all arguments based on surface to
volume ratios becoming negligible in the large volume limit. [47.2.7] This includes many
concepts and results in thermodynamics and statistical physics that depend on the lower
dimensionality of the boundary. [47.2.8] Experimentally it becomes difficult to isolate a
system from its environment. [47.2.9] Fractional diffusion would never come to rest inside
a vessel with thin rigid walls unless the equilibrium concentration prevails also outside
the vessel. [47.2.10] A fractionally viscous fluid at rest inside a container with thin rigid
walls would have to start to move when the same fluid starts flowing outside the ves-
sel. [47.2.11] It seems therefore difficult to reconcile nonlocality in space with theory and
experiment.
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2.3.3. Fractional Time

2.3.3.1. Basic Questions

[48.1.1] Nonlocality in time, unlike space, does not violate basic principles of physics, as
long as it respects causality [43,47–49,54]. [48.1.2] In fact, causal nonlocality in time
is a common nonequilibrium phenomenon known as history dependence, hysteresis and
memory.

[48.2.1] Theoretical physics postulates time translation invariance as a fundamental sym-
metry of nature. [48.2.2] As a consequence energy conservation is fundamental, and the
infinitesimal generator of time translations is a first order time derivative. [48.2.3] Re-
placing integer order time derivatives with fractional time derivatives raises at least three
basic questions:

(1) [48.2.4] What replaces time translations as the physical time evolution ?
(2) [48.2.5] Is the nonlocality of fractional time derivatives consistent with the laws

of nature ?
(3) [48.2.6] Is the asymmetry of fractional time derivatives consistent with the laws

of nature ?

[48.2.7] These questions as well as ergodicity breaking, stationarity, long time limits and
temporal coarse grainig were discussed first within ergodic theory [47–49] and later from
a general perspective in [54].

[48.3.1] The third question requires special remarks because irreversibility is a longstand-
ing and controversial subject [71]. [48.3.2] The problem of irreversibility may be formu-
lated briefly in two ways.

Definition 2.20 (The normal irreversibility problem) [48.4.1] Assume that time is reversible.
Explain how and why time irreversible equations arise in physics.

Definition 2.21 (The reversed irreversibility problem) [48.5.1] Assume that time is irreversible.
Explain how and why time reversible equations arise in physics.

[48.6.1] While the normal problem has occupied physicists and mathematicians for more
than a century, the reversed problem was apparently first formulated in [59]. [48.6.2] Sur-
prisingly, the reversed irreversibility problem has a clear and quantitiative solution within
the theory of fractional time. [48.6.3] The solution is based on the simple postulate that
every time evolution of a physical system is irreversible. [48.6.4] It is not possible to
repeat an experiment in the past [59]. [48.6.5] This empiricial fact seems to reflect a
fundamental law of nature that rivals the law of energy conservation.

[48.7.1] The mathematical concepts corresponding to irreversible time evolutions are op-
erator semigroups and abstract Cauchy problems [15, 93]. [48.7.2] The following brief
introduction to fractional time evolutions (sections 2.3.3.2–2.3.3.8) is in large parts iden-
tical to the brief exposition in [59]. [48.7.3] For more details see [54].
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2.3.3.2. Time Evolution

[49.1.1] A physical time evolution {T (∆t) : 0 ≤ ∆t < ∞} is defined as a one-parameter
family (with time parameter ∆t) of bounded linear time evolution operators T (∆t) on a
Banach space B. [49.1.2] The parameter ∆t represents time durations. The one-parameter
family fulfills the conditions

[T (∆t1)T (∆t2)f ](t0) = [T (∆t1 + ∆t2)f ](t0) (2.140)
[T (0)f ](t0) = f(t0) (2.141)

for all ∆t1,∆t2 ≥ 0, t0 ∈ R and f ∈ B. [49.1.3] The elements f ∈ B represent time
dependent physical observables, i.e. functions on the time axis R. [49.1.4] Note that the
argument ∆t ≥ 0 of T (∆t) has the meaning of a time duration, while t ∈ R in f(t) means
a time instant. [49.1.5] Equations (2.140) and (2.141) define a semigroup. [49.1.6] The
inverse elements T (−∆t) are absent. [49.1.7] This reflects the fundamental difference
between past and future.

[49.2.1] The linear operator A defined as

Af = s-lim
∆t→0+

T (∆t)f − f
∆t

(2.142)

with domain

D(A) =

{
f ∈ B : s-lim

∆t→0+

T (∆t)f − f
∆t

exists

}
(2.143)

is called the infinitesimal generator of the semigroup. [49.2.2] Here s-lim f = g is the
strong limit and means lim ‖f − g‖ = 0 in the norm of B as usual.

2.3.3.3. Continuity

[49.3.1] Physical time evolution is continuous. [49.3.2] This requirement is represented
mathematically by the assumption that

s-lim
∆t→0

T (∆t)f = f (2.144)

holds for all f ∈ B, where s-lim is again the strong limit. [49.3.3] Semigroups of oper-

ators satisfying this condition are called strongly continuous or C0-semigroups [15,93].
[49.3.4] Strong continuity is weaker than uniform continuity and has become recognized
as an important continuity concept that covers most applications [2].

2.3.3.4. Homogeneity

[49.4.1] Homogeneity of time means two different requirements: [49.4.2] Firstly, it requires
that observations are independent of a particular instant or position in
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self-consistency for the transition between time scales.

[50.1.1] Independence of physical processes from their position on the time axis requires
that physical experiments are reproducible if they are ceteris paribus shifted in time.
[50.1.2] The first requirement, that the start of an experiment can be shifted, is expressed
mathematically as the requirement of invariance under time translations. [50.1.3] As a
consequence one demands commutativity of the time evolution with time translations in
the form

[T(τ)T (∆t)f ](t0) = [T (∆t)T(τ)f ](t0) = [T (∆t)f ](t0 − τ) (2.145)

for all ∆t ≥ 0 und t0, τ ∈ R. [50.1.4] Here the translation operator T(t) is defined by

T(τ)f(t0) = f(t0 − τ). (2.146)

[50.1.5] Note that τ ∈ R is a time shift, not a duration. [50.1.6] It can also be negative.
Physical experiments in the past have the same outcome as in the present or in the
future. [50.1.7] Outcomes of past experiments can be studied in the present with the help
of documents (e.g. a video recording), irrespective of the fact that the experiment cannot
be repeated in the past.

[50.2.1] The second requirement of homogeneity is homogeneous divisibility. [50.2.2] The
semigroup property (2.140) implies that for ∆t > 0

T (∆t)...T (∆t) = [T (∆t)]
n

= T (n∆t) (2.147)

holds. [50.2.3] Homogeneous divisibility of a physical time evolution requires that there
exist rescaling factors Dn for ∆t such that with ∆t = ∆t/Dn the limit

lim
n→∞

T (n∆t/Dn) = T (∆t) (2.148)

exists und defines a time evolution T (∆t). [50.2.4] The limit n→∞ corresponds to two
simultaneous limits n→∞,∆t→ 0, and it corresponds to the passage from a microscopic
time scale ∆t to a macroscopic time scale ∆t.

2.3.3.5. Causality

[50.3.1] Causality of the physical time evolution requires that the values of the image
function g(t) = (T (∆t)f)(t) depend only upon values f(s) of the original function with
time instants s < t.

2.3.3.6. Fractional Time Evolution

[50.4.1] The requirement (2.145) of homogeneity implies that the operators T (∆t) are
convolution operators [114, 128]. Let T be a bounded linear operator on L1(R) that
commutes with time translations, i.e. that fulfills eq. (2.145). [50.4.2] Then there
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(Tf)(s) = (µ ∗ f)(s) =

∫
f(s− x)µ(dx) (2.149)

holds [128], [114, p.26]. [51.0.1] Applying this theorem to physical time evolution oper-
ators T (∆t) yields a convolution semigroup µ∆t of measures T (∆t)f(t) = (µ∆t ∗ f)(t)

µ∆t1 ∗ µ∆t2 = µ∆t1+∆t2 (2.150)

with ∆t1,∆t2 ≥ 0. [51.0.2] For ∆t = 0 the measure µ0 is the Dirac-measure concentrated
at 0.

[51.1.1] The requirement of causality implies that the support suppµ∆t ⊂ R+ = [0,∞) of
the semigroup is contained in the positive half axis.

[51.2.1] The convolution semigroups with support in the positive half axis [0,∞) can be
characterized completely by Bernstein functions [10]. [51.2.2] An arbitrarily often differ-
entiable function b : (0,∞) → R with continuous extension to [0,∞) is called Bernstein
function if for all x ∈ (0,∞)

b(x) ≥ 0 (2.151)

(−1)n
dnb(x)

dxn
≤ 0 (2.152)

holds for all n ∈ N. [51.2.3] Bernstein functions are positive, monotonously increasing
and concave.

[51.3.1] The characterization is given by the following theorem [10, p.68]. [51.3.2] There
exists a one-to-one mapping between the convolution semigroups {µt : t ≥ 0} with support
on [0,∞) and the set of Bernstein functions b : (0,∞)→ R [10]. [51.3.3] This mapping is
given by ∫ ∞

0

e−uxµ∆t(dx) = e−∆tb(u) (2.153)

with ∆t > 0 and u > 0.

[51.4.1] The requirement of homogeneous divisibility further restricts the set of admissible
Bernstein functions. [51.4.2] It leaves only those measures µ that can appear as limits

lim
n→∞,∆t→0

µ∆t ∗ ... ∗ µ∆t︸ ︷︷ ︸
n factors

= lim
n→∞

µn∆t/Dn
= µ∆t. (2.154)

[51.4.3] Such limit measures µ exist if and only if b(x) = xα with 0 < α ≤ 1 andDn ∼ n1/α

holds [11,32,54].

[51.5.1] The remaining measures define the class of fractional time evolutions Tα(∆t) that
depend only on one parameter, the fractional order α.
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written as [43,47–49,54]

Tα(∆t)f(t0) =

∞∫
0

f(t0 − s)hα
( s

∆t

) ds

∆t
, (2.155)

where ∆t ≥ 0 and 0 < α ≤ 1. [52.1.2] The density functions hα(x) are the one-sided stable
probability densities [43,47–49,54]. [52.1.3] They have a Mellin transform [45,103,131]

M{hα(x)} (s) =

∞∫
0

xs−1hα(x)dx =
1

α

Γ((1− s)/α)

Γ(1− s)
(2.156)

allowing to identify

hα(x) =
1

αx
H10

11

(
1

x

∣∣∣∣∣ (0, 1)

(0, 1/α)

)
(2.157)

in terms of H-functions [30,45,95,103].

2.3.3.7. Infinitesimal Generator

[52.2.1] The infinitesimal generators of the fractional semigroups Tα(∆t)

Aαf(t) = −(Mα
+ f)(t) = − 1

Γ(−α)

∫ ∞
0

f(t− s)− f(t)

sα+1
ds (2.158)

are fractional time derivatives of Marchaud-Hadamard type [51,98]. [52.2.2] This funda-
mental and general result provides the basis for generalizing physical equations of motion
by replacing the integer order time derivative with a fractional time derivative as the
generator of time evolution [43,54].

[52.3.1] For α = 1 one finds h1(x) = δ(x−1) from eq. (2.158), and the fractional semigroup
Tα=1(∆t) reduces to the conventional translation semigroup T1(∆t)f(t0) = f(t0 − ∆t).
[52.3.2] The special case α = 1 occurs more frequently in the limit (2.154) than the cases
α < 1 in the sense that it has a larger domain of attraction. [52.3.3] The fact that the
semigroup T1(∆t) can often be extended to a group on all of R provides an explanation for
the seemingly fundamental reversibility of mechanical laws and equations. [52.3.4] This
solves the "reversed irreversibility problem".

2.3.3.8. Remarks

[52.4.1] Homogeneous divisibility formalizes the fact that a verbal statement in the present
tense presupposes always a certain time scale for the duration of an
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but as a short time interval [48,54,59].

[53.1.1] Fractional time evolutions seem to be related to the subjective human experience
of time. [53.1.2] In physics the time duration is measured by comparison with a periodic
reference (clock) process. [53.1.3] Contrary to this, the subjective human experience of
time amounts to the comparison with an hour glass, i.e. with a nonperiodic reference.
[53.1.4] It seems that a time duration is experienced as “long” if it is comparable to the time
interval that has passed since birth. [53.1.5] This phenomenon seems to be reflected in
fractional stationary states defined as solutions of the stationarity condition Tα(∆t)f(t) =
f(t). Fractional stationarity requires a generalization of concepts such as “stationarity” or
“equilibrium”. [53.1.6] This outlook could be of interest for nonequilibrium and biological
systems [43,47–49,54].

[53.2.1] Finally, also the special case α→ 0 challenges philosophical remarks [59]. [53.2.2]
In the limit α→ 0 the time evolution operator degenerates into the identity. [53.2.3] This
could be expressed verbally by saying that for α = 0 “becoming” and “being” coincide.
[53.2.4] In this sense the paradoxical limit α → 0 is reminiscent of the eternity concept
known from philosophy.

2.3.4. Identification of α from Models

[53.3.1] Consider now the second basic question of Section 2.3.1: How can the fractional
order α be observed in experiment or identified from concrete models. [53.3.2] To the best
knowledge of this author there exist two examples where this is possible. [53.3.3] Both
are related to diffusion processes. [53.3.4] There does not seem to exist an example of
a rigorous identification of α from Hamiltonian models, although it has been suggested
that such a relation might exist (see [129]).

2.3.4.1. Bochner-Levy Fractional Diffusion

[53.4.1] The term fractional diffusion can refer either to diffusion with a fractional Laplace
operator or to diffusion equations with a fractional time derivative. [53.4.2] Fractional
diffusion (or Fokker-Planck) equations with a fractional Laplacian may be called Bochner-
Levy diffusion. [53.4.3] The identification of the fractional order α in Bochner-Levy dif-
fusion equations has been known for more than five decades [13,14,26]. [53.4.4] For a
lucid account see also [27]. [53.4.5] The fractional order α in this case is the index of the
underlying stable process [13,27]. [53.4.6] With few exceptions [77] these developments
in the nation of mathematics did, for many years, not find much attention or application
in the nation of physics although eminent mathematical physicists such as Mark Kac were
thoroughly familiar
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[page 54, §0] with Bochner-Levy diffusion [65]9. [54.0.1] A possible reason might be the
unresolved problem of locality discussed above. [54.0.2] Bochner himself writes “Whether
this (equation) might have physical interpretation, is not known to us” [13, p.370].

2.3.4.2. Montroll-Weiss Fractional Diffusion

[54.1.1] Diffusion equations with a fractional time derivative will be called Montroll-Weiss
diffusion although fractional time derivatives do not appear in the original paper [87] and
the connection was not discovered until 30 years later [46,60]. [54.1.2] As shown in Section
2.3.3, the locality problem does not arise. [54.1.3] Montroll-Weiss diffusion is expected
to be consistent with all fundamental laws of physics. [54.1.4] The fact that the relation
between Montroll-Weiss theory and fractional time derivatives was first established in [46,
60] seems to be widely unknown at present, perhaps because this fact is never mentioned
in widely read reviews [82] and popular introductions to the subject [112]10.

[54.2.1] There exist several versions of diffusion equations with fractional time derivatives,
and they differ physically or mathematically from each other [54, 82, 104, 127, 130].
[54.2.2] Of interest here will be the fractional diffusion equation for f : Rd × R+ → R

Dα,1
0+ f(r, t) = C ∆f(r, t) (2.159)

with a fractional time derivative of order α and type 1. [54.2.3] The Laplace operator is
∆ and the fractional diffusion constant is C. [54.2.4] The function f(r, t) is assumed to
obey the initial condition f(r, 0+) = f0δ(r). [54.2.5] Equation (2.159) was introduced in
integral form in [104], but the connection with [87] was not given.

[54.3.1] An alternative to eq. (2.159), introduced in [53,54], is

Dα,0
0+ f(r, t) = C ∆f(r, t) (2.160)

with a Riemann-Liouville fractional time derivative Dα
0+ of type 0. [54.3.2] This equation

does not describe diffusion of Montroll-Weiss type [53]. [54.3.3] It has therefore been
called “inconsistent” in [81, p.3566]. As emphasized in [53] the choice of Dα

0+ in (2.159) is
physically and mathematically consistent, but corresponds to a modified initial condition,
namely I1−α

0+ f(r, 0+) = f0δ(r). [54.3.4] Similarly, fractional diffusion equations with time
derivative Dα,β

0+ of order α and type β have been investigated in [54]. [54.3.5] For α = 1
they all reduce to the diffusion equation.

[54.4.1] Before discussing how α arises from an underlying continuous time random walk
it is of interest to give an overall comparison of ordinary diffusion with

9Also, Herrmann Weyl, who pioneered fractional as well as functional calculus and worked on the
foundations of physics, seems not to have applied fractional derivatives to problems in physics.

10Note that, contrary to [112, p.51], fractional derivatives are never mentioned in [6].
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[page 55, §0] α = 1 and fractional diffusion of the form (2.159) with α 6= 1. [55.0.1] This
is conveniently done using the following table published in [46]. [55.0.2] The first column
gives the results for α = 1, the second for 0 < α < 1 and the third for the limit α →
0. [55.0.3] The first row compares the infinitesimal generators of time evolution Aα.
[55.0.4] The second row gives the fundamental solution f(k, u) in Fourier-Laplace space.
[55.0.5] The third row gives f(k, t) and the fourth f(r, t). [55.0.6] In the fifth and sixth
row the asymptotic behaviour is collected for r2/tα → 0 and r2/tα →∞.

Table 2.1. Table from [46].

α = 1 0 < α < 1 α→ 0

Aα
d

dt
D̃
α

0+ → 1

f(k, u)
f0

u+ Ck2

f0u
α−1

uα + Ck2
→ f0

u(1 + Ck2)

f(k, t) f0e−Ctk
2

f0Eα
(
−Ctk2

)
→ f0

1 + Ck2

f(r, t)
f0e−r

2/4Ct

(4πCt)−d/2
f0

(r2π)d/2
Hd
α

(
r2

4Ctα

)
f0|r|1−

d
2√

C(2π)d
K d−2

d

(
|r|√
C

)

r2

tα
→ 0 t−d/2

|r|2−d

tα
|r|(2/d)−(d/2)

r2

tα
→∞ exp

[
− r2

4Ct

]
exp

[
−cα

(
r2

4Ctα

) 1
2−α
]

exp

(
− |r|√

C

)

[55.1.1] In the table Eα,β(x) denotes the generalized Mittag-Leffler function from eq.
(2.130), Kν(x) is the modified Bessel function [1], d > 2, cα = (2 − α)αα/(2−α) and the
shorthand

Hd
α (x) = H20

12

(
x

∣∣∣∣∣ (1, α)

(d/2, 1), (1, 1)

)
(2.161)

was used for the H-function H20
12 . [55.1.2] For information on H-functions see [30,54,79,

95].
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[page 56, §1] [56.1.1] The results in the table show that the normal diffusion (α = 1) is
slowed down for 0 < α < 1 and comes to a complete halt for α → 0. [56.1.2] For more
discussion of the solution see [46].

2.3.4.3. Continuous Time Random Walks

[56.2.1] The fractional diffusion equation (2.159) can be related rigorously to the mi-
croscopic model of Montroll-Weiss continuous time random walks (CTRW’s) [64,87] in
the same way as ordinary diffusion is related to random walks [27]. [56.2.2] The frac-
tional order α can be identified and has a physical meaning related to waiting times in
the Montroll-Weiss model. [56.2.3] The relation between fractional time derivatives and
CTRW’s was first exposed in [46,60]. [56.2.4] The relation was established in two steps.
First, it was shown in [60] that Montroll-Weiss continuous time random walks with a
Mittag-Leffler waiting time density are rigorously equivalent to a fractional master equa-
tion. [56.2.5] Then, in [46] this underlying random walk model was connected to the
fractional diffusion equation (2.159) in the usual asymptotic sense [109] of long times and
large distances11. [56.2.6] For additional results see also [50,53,54,57]

[56.3.1] The basic integral equation for separable continuous time random walks describes
a random walker in continuous time without correlation between its spatial and temporal
behaviour. [56.3.2] It reads [39,64,87,88,118]

f(r, t) = δr,0Φ(t) +

t∫
0

ψ(t− t′)
∑
r′

λ(r− r′)f(r′, t′)dt′, (2.162)

where f(r, t) denotes the probability density to find the walker at position r ∈ Rd after
time t if it started from r = 0 at time t = 0. [56.3.3] The function λ(r) is the probability
for a displacement by r in each step, and ψ(t) gives the probability density of waiting
time intervals between steps. [56.3.4] The transition probabilities obey

∑
r λ(r) = 1, and

Φ(t) = 1−
∫ t

0
ψ(t′)dt′ is the survival probability at the initial site.

[56.4.1] The fractional master equation introduced in [60] with inital condition f(r, 0) =
δr,0 reads

Dα,1
0+ f(r, t) =

∑
r′

w(r− r′)f(r′, t) (2.163)

with fractional transition rates w(r) obeying
∑

r w(r) = 0. [56.4.2] Note, that eq. (2.162)
contains a free function ψ(t) that has no counterpart in eq. (2.163). [56.4.3] The rigorous
relation between eq. (2.162) and eq. (2.163), first established in [60], is given by the
relation

λ(k) = 1 + ταw(k) (2.164)

11This is emphasized in eqs. (1.8) and (2.1) in [46] that are, of course, asymptotic.
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[page 57, §0] for the Fourier transformed transition rates w(r) and probabilities λ(r), and
the choice

ψ(t) =
tα−1

τα
Eα,α

(
−
(
t

τ

)α)
(2.165)

for the waiting time density, where τ > 0 is a characteristic time constant. [57.0.1] With
Eα,α(0) = 1 it follows that

ψ(t) ∼ tα−1 (2.166)

for t→ 0. [57.0.2] From Eα,α(x) ∼ x−2 for x→∞ one finds

ψ(t) ∼ t−α−1 (2.167)

for t→∞. [57.0.3] For α = 1 the waiting time density becomes the exponential distribu-
tion, and for α→ 0 it approaches 1/t.

[57.1.1] It had been observed already in the early 1970’s that continuous time random
walks are equivalent to generalized master equations [9,66]. [57.1.2] Similarly, the Fourier-
Laplace formula

f(k, u) = uα−1/(uα + Ck2) (2.168)

for the solution of CTRW’s with algbraic tails of the form (2.167) was well known (see
[117, eq.(21), p.402] [110, eq.(23), p.505] [67, eq.(29), p.3083]). [57.1.3] Comparison with
row 2 of the table makes the connection between the fractional diffusion equation (2.159)
and the CTRW-equation (2.162) evident. [57.1.4] However, this connection with fractional
calculus was not made before the appearance of [46,60]. [57.1.5] In particular, there is
no mention of fractional derivatives or fractional calculus in [6].

[57.2.1] The rigorous relation between fractional diffusion and CTRW’s, established in [46,
60] and elaborated in [50,53,54,57], has become a fruitful starting point for subsequent
investigations, particularly into fractional Fokker-Planck equations with drift [19,33,51,
61,80–83,100,111,112,130].

Acknowledgement: The author thanks Th. Müller and S. Candelaresi for reading the
manuscript.
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[page 59, §1]

[59.1.1] Let α ∈ C, x > a

f(x) (Iαa+ f)(x)

f(λx) λ−α(Iαλa+ f)(λx), λ > 0 (A.1)

(x− a)β
Γ(β + 1)

Γ(α+ β + 1)
(x− a)α+β (A.2)

Reβ > 0

eλx eλa(x− a)αE1,α+1(λ(x− a)) (A.3)
λ ∈ R

(x− a)β−1 eλx
Γ(β)eλa

Γ(α+ β)
(x− a)α+β−1

1F1(β;α+ β;λ(x− a)) (A.4)

Reβ > 0

(x− a)β−1 log(x− a)
Γ(β)(x− a)α+β−1

Γ(α+ β)
[ψ(β)− ψ(α+ β) + log(x− a)] (A.5)

(x− a)β−1Eγ,β((x− a)γ) (x− a)α+β−1Eγ,α+β((x− a)γ) (A.6)
Reβ > 0,Re γ > 0

Table A.1. Some fractional integrals
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[page 61, §1]

[61.1.1] The set G denotes an interval, a domain in Rd or a measure space (G,A, µ) [8]
depending on the context. [61.1.2] K stands for R or C. γ = (γ1, ..., γd) ∈ Nd0 is a
multiindex and |γ| =

∑d
i=1 γi. [61.1.3] For the definition of Hilbert and Banach spaces

the reader may consult e.g. [128]. [61.1.4] The following notation is used for various
spaces of continuous functions:

C0(G) := {f : G→ K|f is continuous} (B.1)

Ck(G) := {f ∈ C0(G)|f is k-times continuously differentiable} (B.2)

Ck0 (G) := {f ∈ Ck(G)|f vanishes at the boundary ∂G} (B.3)
Ckb (G) := {f ∈ Ck(G)|f is bounded} (B.4)
Ckc (G) := {f ∈ Ck(G)|f has compact support} (B.5)
Ckub(G) := {f ∈ Ck(G)|f is bounded and uniformly continuous} (B.6)
ACk([a, b]) := {f ∈ Ck([a, b])|f (k) is absolutely continuous} (B.7)
[61.1.5] For compact G the norm on these spaces is

‖f‖∞ := sup
x∈G
|f(x)|. (B.8)

[61.1.6] The Lebesgue spaces over (G,A, µ) are defined as

Lploc(G, µ) := {f : G→ K | fp is integrable on every compact K ⊂ G} (B.9)

Lp(G, µ) := {f : G→ K | fp is integrable} (B.10)
with norm

‖f‖p :=

∫
G

|f(s)|pdµ(s)

1/p

. (B.11)
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[page 62, §0] [62.0.1] For p =∞
L∞(G, µ) := {f : G→ K | f is measurable and ‖f‖∞ <∞} (B.12)

where

‖f‖∞ := sup {|z| : z ∈ fess(G)} (B.13)

and

fess(G) := {z ∈ C : µ ({x ∈ G : |f(x)− z| < ε}) 6= 0 for all ε > 0} (B.14)

is the essential range of f .

[62.1.1] The Hölder spaces Cα(G) with 0 < α < 1 are defined as

Cα(G) := {f : G→ K|∃c ≥ 0 s.t. |f(x)− f(y)| ≤ c|x− y|α,∀x, y ∈ G} (B.15)

with norm

‖f‖α := ‖f‖∞ + cα (B.16)

where cα is the smallest constant c in (B.15). [62.1.2] For α > 1 the Hölder space Cα(G)
contains only the constant functions and therefore α is chosen as 0 < α < 1. [62.1.3] The
spaces Ck,α(G), k ∈ N, consist of those functions f ∈ Ck(G) whose partial derivatives of
order k all belong to Cα(G).

[62.2.1] The Sobolev spaces are defined by

W k,p(G) =

{
f ∈ Lp(G) :

f is k-times differentiable in the
sense of distributions and Dγ f ∈
Lp(G) for all γ ∈ Nd0 with |γ| ≤ k

}
(B.17)

where the derivative Dγ = ∂γ11 ...∂γdd with multiindex γ = (γ1, ..., γd) ∈ Nd0 is understood
in the sense of distributions. [62.2.2] A distribution f is in W k,p(G) if and only if for each
γ ∈ Nd0 with |γ| ≤ k there exists fγ ∈ Lp(G) such that∫
G

φfγdx = (−1)|γ|
∫
G

(Dγ φ)fdx (B.18)

for all test functions φ. [62.2.3] In the special case d = 1 one has f ∈ W k,p(G) if and
only if f ∈ Ck−1(G), f (k−1) ∈ AC(G), and f (j) ∈ Lp(G) for j = 0, 1, ..., k. [62.2.4] The
Sobolev spaces are equipped with the norm

‖f‖Wk,p(G) =
∑
|γ|≤m

‖Dγ f‖p (B.19)

(see [2]). [62.2.5] A function is called rapidly decreasing if it is infinitely many times
differentiable, i.e. f ∈ C∞(Rd) and

lim
|x|→∞

|x|n Dγ f(x) = 0 (B.20)



B. FUNCTION SPACES 63

[page 63, §0] for all n ∈ N and γ ∈ Nd. [63.0.1] The test function space

S(Rd) := {f ∈ C∞(Rd)|f is rapidly decreasing} (B.21)

is called Schwartz space.
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Distributions

[page 65, §1]

[65.1.1] Distributions are generalized functions [31]. [65.1.2] They were invented to over-
come the differentiability requirements for functions in analysis and mathematical physics
[63,105]. [65.1.3] Distribution theory has also a physical origin. [65.1.4] A physical ob-
servable f can never be measured at a point x ∈ Rd because every measurement apparatus
averages over a small volume around x [115]. [65.1.5] This “smearing out” can be modelled
as an integration with smooth “test functions” having compact support.

[65.2.1] Let X denote the space of admissible test functions. [65.2.2] Commonly used test
function spaces are C∞(Rd), the space of infinitely often differentiable functions, C∞c (Rd),
the space of smooth functions with compact support (see (B.5)), C∞0 (Rd), the space of
smooth functions vanishing at infinity (see (B.3)), or the so called Schwartz space S(Rd)
of smooth functions decreasing rapidly at infinity (see (B.21)).

[65.3.1] A distribution F : X → K is a linear and continuous mapping that maps ϕ ∈ X
to a real (K = R) or complex (K = C) number 1. [65.3.2] There exists a canonical
correspondence between functions and distributions. [65.3.3] More precisely, for every
locally integrable function f ∈ L1

loc(Rd) there exists a distribution Ff = 〈f, .〉 (often also
denoted with the same symbol f) defined by

Ff (ϕ) = 〈f, ϕ〉 =

∫
Rd

f(x)ϕ(x) dx (C.1)

for every test function ϕ ∈ X. [65.3.4] Distributions that can be written in this way
are called regular distributions. [65.3.5] Distributions that are not regular are sometimes
called singular. [65.3.6] The mapping f → 〈f, .〉 that assigns to a locally integrable f
its associated distribution is injective and continuous. [65.3.7] The set of distributions is
again a vector space, namely the dual space of the vector space of test functions, and it
is denoted as X ′ where X is the test function space.

1For vector valued distributions see [106]
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[page 66, §1] [66.1.1] Important examples for singular distributions are the Dirac δ-function
and its derivatives. [66.1.2] They are defined by the rules∫

δ(x)ϕ(x)dx = ϕ(0) (C.2)∫
δ(n)(x)ϕ(x) = (−1)n

dnϕ

dxn

∣∣∣∣
x=0

(C.3)

for every test function ϕ ∈ X and n ∈ N. [66.1.3] Clearly, δ(x) is not a function, because
if it were a function, then

∫
δ(x)ϕ(x)dx = 0 would have to hold. [66.1.4] Another example

for a singular distribution is the finite part or principal value P {1/x} of 1/x. [66.1.5] It
is defined by〈
P
{

1

x

}
, ϕ

〉
= lim
ε→0+

∫
|x|≥ε

ϕ(x)

x
dx (C.4)

for ϕ ∈ C∞c (R). [66.1.6] It is a singular distribution on R, but regular on R \ {0} where
it coincides with the function 1/x.

[66.2.1] Equation (C.2) illustrates how distributions circumvent the limitations of differen-
tiation for ordinary functions. [66.2.2] The basic idea is the formula for partial integration∫
G

∂if(x)ϕ(x)dx = −
∫
G

f(x)∂iϕ(x)dx (C.5)

valid for f ∈ C1
c (G), ϕ ∈ C1(G), i = 1, ..., d and G ⊂ Rd an open set. [66.2.3] The

formula is proved by extending fϕ as 0 to all of Rd and using Leibniz’ product rule.
[66.2.4] Rewriting the formula as

〈∂if, ϕ〉 = −〈f, ∂iϕ〉 (C.6)

suggests to view ∂if again as a linear continuous mapping (integral) on a space X of test
functions ϕ ∈ X. [66.2.5] Then the formula is a rule for differentiating f given that ϕ is
differentiable.

[66.3.1] Distributions on the test function space S(Rd) are called tempered distributions.
[66.3.2] The space of tempered distributions is the dual space S(Rd)′. [66.3.3] Tempered
distributions generalize locally integrable functions growing at most polynomially for
|x| → ∞. [66.3.4] All distributions with compact support are tempered. Square integrable
functions are tempered distributions. [66.3.5] The derivative of a tempered distribution
is again a tempered distribution. [66.3.6] S(Rd) is dense in Lp(Rd) for all 1 ≤ p < ∞
but not in L∞(Rd). [66.3.7] The Fourier transform and its inverse are continous maps
of the Schwartz space onto itself. [66.3.8] A distribution f belongs to S(Rd)′ if and only
if it is the derivative of a continuous function with slow growth, i.e. it is of the form
f = Dγ [(1 + |x|2)k/2g(x)]
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[page 67, §0] where k ∈ N, γ ∈ Nd and g is a bounded continuous function on Rd.
[67.0.1] Note that the exponential function is not a tempered distribution.

[67.1.1] A distribution f ∈ S(Rd)′ is said to have compact support if there exists a compact
subset K ⊂ Rd such that 〈f, ϕ〉 = 0 for all test functions with suppϕ∩K = ∅. [67.1.2] The
Dirac δ-function is an example. [67.1.3] Other examples are Radon measures on a compact
set K. [67.1.4] They can be described as linear functionals on C0(K). [67.1.5] If the set K
is sufficiently regular (e.g. if it is the closure of a region with piecewise smooth boundary)
then every distribution with compact support in K can be written in the form

f =
∑
|γ|≤N

Dγ fγ (C.7)

where γ = (γ1, ..., γd), γj ≥ 0 is a multiindex, |γ| =
∑
γi and fγ are continuous functions

of compact support. [67.1.6] Here N ≥ 0 and the partial derivatives in Dγ are distribu-
tional derivatives defined above. [67.1.7] A special case are distributions with support in
a single point taken as {0}. [67.1.8] Any such distributions can be written in the form

f =
∑
|γ|≤N

cγ Dγ δ (C.8)

where δ is the Dirac δ-function and cγ are constants.

[67.2.1] The multiplication of a distribution f with a smooth function g is defined by the
formula 〈gf, ϕ〉 = 〈f, gϕ〉 where g ∈ C∞(G). [67.2.2] A combination of multiplication by
a smooth function and differentiation allows to define differential operators

A =
∑
|γ|≤m

aγ(x) Dγ (C.9)

with smooth aγ(x) ∈ C∞(G). [67.2.3] They are well defined for all distributions in
C∞c (G)′.

[67.3.1] A distribution is called homogeneous of degree α ∈ C if

f(λx) = λαf(x) (C.10)

for all λ > 0. [67.3.2] Here λα = exp(α log λ) is the standard definition. [67.3.3] The
Dirac δ-distribution is homogeneous of degree −d. [67.3.4] For regular distributions the
definition coincides with homogeneity of functions f ∈ L1

loc(Rd). [67.3.5] The convolution
kernels Kα

± from eq. (2.39) are homogeneous of degree α − 1. [67.3.6] Homogeneous
distributions remain homogeneous under differentiation. [67.3.7] A homogeneous locally
integrable function g on Rd\{0} of degree α can be extended to homogeneous distributions
f on all of Rd. [67.3.8] The degree of homogeneity of f must again be α. [67.3.9] As long
as α 6= −d,−d− 1,−d− 2, ... the integral

〈gβ , ϕ〉 =

∫
g

(
x

|x|

)
|x|βddx (C.11)
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[page 68, §0] which converges absolutely for Reβ > −d can be used to define f = gα
by analytic continuation from the region Reβ > −d to the point α. [68.0.1] For α =
−d,−d − 1, ..., however, this is not always possible. [68.0.2] An example is the function
1/|x| on R \ {0}. [68.0.3] It cannot be extended to a homogeneous distribution of degree
−1 on all of R.

[68.1.1] For f ∈ L1
loc(G1) and g ∈ L1

loc(G2) their tensor product is the function (f ⊗
g)(x, y) = f(x)g(y) defined on G1 ×G2. [68.1.2] The function f ⊗ g gives a functional

〈f ⊗ g, ϕ(x, y)〉 = 〈f(x), 〈g(y), ϕ(x, y)〉〉 (C.12)

for ϕ ∈ C∞c (G1 ×G2). [68.1.3] For two distributions this formula defines the their tensor
product. [68.1.4] An example is a measure µ(x)⊗ δ(y) concentrated on the surface y = 0
in G1⊗G2 where µ(x) is a measure on G1. [68.1.5] The convolution of distribution defined
in the main text (see eq. (2.52) can then be defined by the formula

〈f ∗ g, ϕ〉 = 〈(f ⊗ g)(x, y), ϕ(x+ y)〉 (C.13)

whenever one of the distributions f or g has compact support.
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